File size: 10,912 Bytes
ce5347c
f1dd9a3
ce5347c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c122de
 
 
 
 
 
 
 
837ec1b
 
 
 
 
 
 
 
 
3c122de
 
 
837ec1b
3c122de
 
 
837ec1b
 
3c122de
 
837ec1b
3c122de
 
 
ce5347c
 
45559ac
 
 
 
 
3c122de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce5347c
 
 
3c122de
ce5347c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45559ac
 
 
 
 
 
 
 
 
 
ce5347c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
base_model: KB/bert-base-swedish-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: news_category_classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# News Category Classification for IPTC NewsCodes

This model is a fine-tuned version of [KB/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased) on a private dataset.

Built from a limited set of English, Swedish and Norwegian titles to classify news content within 16 categories as specified by the IPTC NewsCodes. 

The model has been fine-tuned on a dataset that is greatly skewed, but has been slightly augmented to stabilize it.

## Model description

The model is intended to categorize Norwegian, Swedish and English news content within the specified 16 categories but is a test model for demonstration purposes. 
It needs more data within several categories to provide 100% value but it will outperform Claude Haiku and GPT-3.5 on this use case.

## Intended uses & limitations

Use it to categorize news texts. Only set the category if the value is at least 60% for the label, otherwise the model is uncertain.

# Test examples 

**Input:** Mann siktet for drapsforsøk på Slovakias statsministeren

**Output:** crime, law and justice

**Input:** Tre døde i kioskbrann i Tyskland

**Output:** disaster, accident, and emergency incident

**Input:** Kultfilm får Netflix-oppfølger. Kultfilmen «Happy Gilmore» fra 1996 får en oppfølger på Netflix. Det røper strømmetjenesten selv på X, tidligere Twitter. –Happy Gilmore er tilbake!

**Output:** arts, culture, entertainment and media

# Performance

It achieves the following results on the evaluation set:
- Loss: 0.8030
- Accuracy: 0.7431
- F1: 0.7474
- Precision: 0.7695
- Recall: 0.7431

See the performance (accuracy) for each label below:
- Arts, culture, entertainment and media: 0.6842
- Conflict, war and peace: 0.7351
- Crime, law and justice: 0.8918
- Disaster, accident, and emergency incident: 0.8699
- Economy, business, and finance: 0.6893
- Environment: 0.4483
- Health: 0.7222
- Human interest: 0.3182
- Labour: 0.5
- Lifestyle and leisure: 0.5556
- Politics: 0.7909
- Science and technology: 0.4583
- Society: 0.3538
- Sport: 0.9615
- Weather: 1.0
- Religion: 0.0

## Training and evaluation data

Trained with the trainer, setting a learning rate of 2e-05 and batch size of 16 for 3 epochs.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | F1     | Precision | Recall | Accuracy Label Arts, culture, entertainment and media | Accuracy Label Conflict, war and peace | Accuracy Label Crime, law and justice | Accuracy Label Disaster, accident, and emergency incident | Accuracy Label Economy, business, and finance | Accuracy Label Environment | Accuracy Label Health | Accuracy Label Human interest | Accuracy Label Labour | Accuracy Label Lifestyle and leisure | Accuracy Label Politics | Accuracy Label Religion | Accuracy Label Science and technology | Accuracy Label Society | Accuracy Label Sport | Accuracy Label Weather |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----------------------------------------------------:|:--------------------------------------:|:-------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------:|:--------------------------:|:---------------------:|:-----------------------------:|:---------------------:|:------------------------------------:|:-----------------------:|:-----------------------:|:-------------------------------------:|:----------------------:|:--------------------:|:----------------------:|
| 1.9761        | 0.2907 | 200  | 1.4046          | 0.6462   | 0.6164 | 0.6057    | 0.6462 | 0.3158                                                | 0.8315                                 | 0.7629                                | 0.7055                                                    | 0.5437                                        | 0.0                        | 0.5                   | 0.0                           | 0.0                   | 0.3333                               | 0.4843                  | 0.0                     | 0.0833                                | 0.0                    | 0.9615               | 0.0                    |
| 1.2153        | 0.5814 | 400  | 1.0225          | 0.6894   | 0.6868 | 0.7652    | 0.6894 | 0.7895                                                | 0.6554                                 | 0.8196                                | 0.8562                                                    | 0.6408                                        | 0.2414                     | 0.8333                | 0.1364                        | 0.0                   | 0.6667                               | 0.8467                  | 0.0                     | 0.375                                 | 0.0154                 | 0.9615               | 1.0                    |
| 0.954         | 0.8721 | 600  | 0.8858          | 0.7231   | 0.7138 | 0.7309    | 0.7231 | 0.7368                                                | 0.7795                                 | 0.8918                                | 0.8699                                                    | 0.6214                                        | 0.3448                     | 0.8889                | 0.1818                        | 1.0                   | 0.5556                               | 0.6899                  | 0.0                     | 0.25                                  | 0.0462                 | 0.9615               | 1.0                    |
| 0.6662        | 1.1628 | 800  | 0.9381          | 0.6881   | 0.7009 | 0.7618    | 0.6881 | 0.7895                                                | 0.6126                                 | 0.8454                                | 0.8630                                                    | 0.6505                                        | 0.4483                     | 0.7222                | 0.2273                        | 1.0                   | 0.4444                               | 0.8293                  | 0.0                     | 0.5417                                | 0.2308                 | 0.9615               | 1.0                    |
| 0.5554        | 1.4535 | 1000 | 0.8791          | 0.7025   | 0.7124 | 0.7628    | 0.7025 | 0.7368                                                | 0.6478                                 | 0.9021                                | 0.8562                                                    | 0.6602                                        | 0.3103                     | 0.7778                | 0.3636                        | 0.5                   | 0.5556                               | 0.8084                  | 0.0                     | 0.5                                   | 0.1846                 | 0.9615               | 1.0                    |
| 0.4396        | 1.7442 | 1200 | 0.8275          | 0.7175   | 0.7280 | 0.7686    | 0.7175 | 0.7895                                                | 0.6631                                 | 0.8196                                | 0.8836                                                    | 0.6893                                        | 0.3793                     | 0.8333                | 0.4091                        | 0.5                   | 0.5556                               | 0.8362                  | 0.0                     | 0.4167                                | 0.3692                 | 0.9615               | 1.0                    |
| 0.383         | 2.0349 | 1400 | 0.7929          | 0.745    | 0.7501 | 0.7653    | 0.745  | 0.6842                                                | 0.7841                                 | 0.8866                                | 0.8767                                                    | 0.7087                                        | 0.4483                     | 0.7778                | 0.4091                        | 0.5                   | 0.5556                               | 0.6899                  | 0.0                     | 0.4167                                | 0.2923                 | 0.9615               | 0.0                    |
| 0.3418        | 2.3256 | 1600 | 0.8042          | 0.7438   | 0.7440 | 0.7686    | 0.7438 | 0.7895                                                | 0.7351                                 | 0.9072                                | 0.8493                                                    | 0.7864                                        | 0.4483                     | 0.7778                | 0.3182                        | 0.5                   | 0.5556                               | 0.7909                  | 0.0                     | 0.4167                                | 0.1846                 | 0.9615               | 0.0                    |
| 0.248         | 2.6163 | 1800 | 0.8387          | 0.7275   | 0.7325 | 0.7610    | 0.7275 | 0.6842                                                | 0.6891                                 | 0.8814                                | 0.8699                                                    | 0.7573                                        | 0.4138                     | 0.8333                | 0.4091                        | 0.5                   | 0.5556                               | 0.8014                  | 0.0                     | 0.4167                                | 0.2769                 | 0.9615               | 0.0                    |
| 0.2525        | 2.9070 | 2000 | 0.8137          | 0.735    | 0.7413 | 0.7697    | 0.735  | 0.6842                                                | 0.7106                                 | 0.8763                                | 0.8699                                                    | 0.6796                                        | 0.4483                     | 0.7222                | 0.3636                        | 0.5                   | 0.5556                               | 0.8153                  | 0.0                     | 0.4583                                | 0.3385                 | 0.9615               | 0.0                    |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1