File size: 10,912 Bytes
ce5347c f1dd9a3 ce5347c 3c122de 837ec1b 3c122de 837ec1b 3c122de 837ec1b 3c122de 837ec1b 3c122de ce5347c 45559ac 3c122de ce5347c 3c122de ce5347c 45559ac ce5347c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
base_model: KB/bert-base-swedish-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: news_category_classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# News Category Classification for IPTC NewsCodes
This model is a fine-tuned version of [KB/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased) on a private dataset.
Built from a limited set of English, Swedish and Norwegian titles to classify news content within 16 categories as specified by the IPTC NewsCodes.
The model has been fine-tuned on a dataset that is greatly skewed, but has been slightly augmented to stabilize it.
## Model description
The model is intended to categorize Norwegian, Swedish and English news content within the specified 16 categories but is a test model for demonstration purposes.
It needs more data within several categories to provide 100% value but it will outperform Claude Haiku and GPT-3.5 on this use case.
## Intended uses & limitations
Use it to categorize news texts. Only set the category if the value is at least 60% for the label, otherwise the model is uncertain.
# Test examples
**Input:** Mann siktet for drapsforsøk på Slovakias statsministeren
**Output:** crime, law and justice
**Input:** Tre døde i kioskbrann i Tyskland
**Output:** disaster, accident, and emergency incident
**Input:** Kultfilm får Netflix-oppfølger. Kultfilmen «Happy Gilmore» fra 1996 får en oppfølger på Netflix. Det røper strømmetjenesten selv på X, tidligere Twitter. –Happy Gilmore er tilbake!
**Output:** arts, culture, entertainment and media
# Performance
It achieves the following results on the evaluation set:
- Loss: 0.8030
- Accuracy: 0.7431
- F1: 0.7474
- Precision: 0.7695
- Recall: 0.7431
See the performance (accuracy) for each label below:
- Arts, culture, entertainment and media: 0.6842
- Conflict, war and peace: 0.7351
- Crime, law and justice: 0.8918
- Disaster, accident, and emergency incident: 0.8699
- Economy, business, and finance: 0.6893
- Environment: 0.4483
- Health: 0.7222
- Human interest: 0.3182
- Labour: 0.5
- Lifestyle and leisure: 0.5556
- Politics: 0.7909
- Science and technology: 0.4583
- Society: 0.3538
- Sport: 0.9615
- Weather: 1.0
- Religion: 0.0
## Training and evaluation data
Trained with the trainer, setting a learning rate of 2e-05 and batch size of 16 for 3 epochs.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Arts, culture, entertainment and media | Accuracy Label Conflict, war and peace | Accuracy Label Crime, law and justice | Accuracy Label Disaster, accident, and emergency incident | Accuracy Label Economy, business, and finance | Accuracy Label Environment | Accuracy Label Health | Accuracy Label Human interest | Accuracy Label Labour | Accuracy Label Lifestyle and leisure | Accuracy Label Politics | Accuracy Label Religion | Accuracy Label Science and technology | Accuracy Label Society | Accuracy Label Sport | Accuracy Label Weather |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----------------------------------------------------:|:--------------------------------------:|:-------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------:|:--------------------------:|:---------------------:|:-----------------------------:|:---------------------:|:------------------------------------:|:-----------------------:|:-----------------------:|:-------------------------------------:|:----------------------:|:--------------------:|:----------------------:|
| 1.9761 | 0.2907 | 200 | 1.4046 | 0.6462 | 0.6164 | 0.6057 | 0.6462 | 0.3158 | 0.8315 | 0.7629 | 0.7055 | 0.5437 | 0.0 | 0.5 | 0.0 | 0.0 | 0.3333 | 0.4843 | 0.0 | 0.0833 | 0.0 | 0.9615 | 0.0 |
| 1.2153 | 0.5814 | 400 | 1.0225 | 0.6894 | 0.6868 | 0.7652 | 0.6894 | 0.7895 | 0.6554 | 0.8196 | 0.8562 | 0.6408 | 0.2414 | 0.8333 | 0.1364 | 0.0 | 0.6667 | 0.8467 | 0.0 | 0.375 | 0.0154 | 0.9615 | 1.0 |
| 0.954 | 0.8721 | 600 | 0.8858 | 0.7231 | 0.7138 | 0.7309 | 0.7231 | 0.7368 | 0.7795 | 0.8918 | 0.8699 | 0.6214 | 0.3448 | 0.8889 | 0.1818 | 1.0 | 0.5556 | 0.6899 | 0.0 | 0.25 | 0.0462 | 0.9615 | 1.0 |
| 0.6662 | 1.1628 | 800 | 0.9381 | 0.6881 | 0.7009 | 0.7618 | 0.6881 | 0.7895 | 0.6126 | 0.8454 | 0.8630 | 0.6505 | 0.4483 | 0.7222 | 0.2273 | 1.0 | 0.4444 | 0.8293 | 0.0 | 0.5417 | 0.2308 | 0.9615 | 1.0 |
| 0.5554 | 1.4535 | 1000 | 0.8791 | 0.7025 | 0.7124 | 0.7628 | 0.7025 | 0.7368 | 0.6478 | 0.9021 | 0.8562 | 0.6602 | 0.3103 | 0.7778 | 0.3636 | 0.5 | 0.5556 | 0.8084 | 0.0 | 0.5 | 0.1846 | 0.9615 | 1.0 |
| 0.4396 | 1.7442 | 1200 | 0.8275 | 0.7175 | 0.7280 | 0.7686 | 0.7175 | 0.7895 | 0.6631 | 0.8196 | 0.8836 | 0.6893 | 0.3793 | 0.8333 | 0.4091 | 0.5 | 0.5556 | 0.8362 | 0.0 | 0.4167 | 0.3692 | 0.9615 | 1.0 |
| 0.383 | 2.0349 | 1400 | 0.7929 | 0.745 | 0.7501 | 0.7653 | 0.745 | 0.6842 | 0.7841 | 0.8866 | 0.8767 | 0.7087 | 0.4483 | 0.7778 | 0.4091 | 0.5 | 0.5556 | 0.6899 | 0.0 | 0.4167 | 0.2923 | 0.9615 | 0.0 |
| 0.3418 | 2.3256 | 1600 | 0.8042 | 0.7438 | 0.7440 | 0.7686 | 0.7438 | 0.7895 | 0.7351 | 0.9072 | 0.8493 | 0.7864 | 0.4483 | 0.7778 | 0.3182 | 0.5 | 0.5556 | 0.7909 | 0.0 | 0.4167 | 0.1846 | 0.9615 | 0.0 |
| 0.248 | 2.6163 | 1800 | 0.8387 | 0.7275 | 0.7325 | 0.7610 | 0.7275 | 0.6842 | 0.6891 | 0.8814 | 0.8699 | 0.7573 | 0.4138 | 0.8333 | 0.4091 | 0.5 | 0.5556 | 0.8014 | 0.0 | 0.4167 | 0.2769 | 0.9615 | 0.0 |
| 0.2525 | 2.9070 | 2000 | 0.8137 | 0.735 | 0.7413 | 0.7697 | 0.735 | 0.6842 | 0.7106 | 0.8763 | 0.8699 | 0.6796 | 0.4483 | 0.7222 | 0.3636 | 0.5 | 0.5556 | 0.8153 | 0.0 | 0.4583 | 0.3385 | 0.9615 | 0.0 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|