ilsilfverskiold
commited on
Commit
•
837ec1b
1
Parent(s):
3c122de
Update README.md
Browse files
README.md
CHANGED
@@ -23,15 +23,27 @@ Built from a limited set of English, Swedish and Norwegian titles to classify ne
|
|
23 |
|
24 |
The model has been fine-tuned on a dataset that is greatly skewed, but has been slightly augmented to stabilize it.
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# Test examples
|
27 |
|
28 |
**Input:** Mann siktet for drapsforsøk på Slovakias statsministeren
|
|
|
29 |
**Output:** crime, law and justice
|
30 |
|
31 |
**Input:** Tre døde i kioskbrann i Tyskland
|
32 |
-
|
|
|
33 |
|
34 |
**Input:** Kultfilm får Netflix-oppfølger. Kultfilmen «Happy Gilmore» fra 1996 får en oppfølger på Netflix. Det røper strømmetjenesten selv på X, tidligere Twitter. –Happy Gilmore er tilbake!
|
|
|
35 |
**Output:** arts, culture, entertainment and media
|
36 |
|
37 |
# Performance
|
@@ -61,15 +73,6 @@ See the performance (accuracy) for each label below:
|
|
61 |
- Weather: 1.0
|
62 |
- Religion: 0.0
|
63 |
|
64 |
-
## Model description
|
65 |
-
|
66 |
-
The model is intended to categorize Norwegian, Swedish and English news content within the specified 16 categories but is a test model for demonstration purposes.
|
67 |
-
It needs more data within several categories to provide 100% value but it will outperform Claude Haiku and GPT-3.5 on this use case.
|
68 |
-
|
69 |
-
## Intended uses & limitations
|
70 |
-
|
71 |
-
Use it to categorize news texts. Only set the category if the value is at least 60% for the label, otherwise the model is uncertain.
|
72 |
-
|
73 |
## Training and evaluation data
|
74 |
|
75 |
Trained with the trainer, setting a learning rate of 2e-05 and batch size of 16 for 3 epochs.
|
|
|
23 |
|
24 |
The model has been fine-tuned on a dataset that is greatly skewed, but has been slightly augmented to stabilize it.
|
25 |
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
The model is intended to categorize Norwegian, Swedish and English news content within the specified 16 categories but is a test model for demonstration purposes.
|
29 |
+
It needs more data within several categories to provide 100% value but it will outperform Claude Haiku and GPT-3.5 on this use case.
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
Use it to categorize news texts. Only set the category if the value is at least 60% for the label, otherwise the model is uncertain.
|
34 |
+
|
35 |
# Test examples
|
36 |
|
37 |
**Input:** Mann siktet for drapsforsøk på Slovakias statsministeren
|
38 |
+
|
39 |
**Output:** crime, law and justice
|
40 |
|
41 |
**Input:** Tre døde i kioskbrann i Tyskland
|
42 |
+
|
43 |
+
**Output:** disaster, accident, and emergency incident
|
44 |
|
45 |
**Input:** Kultfilm får Netflix-oppfølger. Kultfilmen «Happy Gilmore» fra 1996 får en oppfølger på Netflix. Det røper strømmetjenesten selv på X, tidligere Twitter. –Happy Gilmore er tilbake!
|
46 |
+
|
47 |
**Output:** arts, culture, entertainment and media
|
48 |
|
49 |
# Performance
|
|
|
73 |
- Weather: 1.0
|
74 |
- Religion: 0.0
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
## Training and evaluation data
|
77 |
|
78 |
Trained with the trainer, setting a learning rate of 2e-05 and batch size of 16 for 3 epochs.
|