ilsilfverskiold commited on
Commit
837ec1b
1 Parent(s): 3c122de

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -10
README.md CHANGED
@@ -23,15 +23,27 @@ Built from a limited set of English, Swedish and Norwegian titles to classify ne
23
 
24
  The model has been fine-tuned on a dataset that is greatly skewed, but has been slightly augmented to stabilize it.
25
 
 
 
 
 
 
 
 
 
 
26
  # Test examples
27
 
28
  **Input:** Mann siktet for drapsforsøk på Slovakias statsministeren
 
29
  **Output:** crime, law and justice
30
 
31
  **Input:** Tre døde i kioskbrann i Tyskland
32
- Output: disaster, accident, and emergency incident
 
33
 
34
  **Input:** Kultfilm får Netflix-oppfølger. Kultfilmen «Happy Gilmore» fra 1996 får en oppfølger på Netflix. Det røper strømmetjenesten selv på X, tidligere Twitter. –Happy Gilmore er tilbake!
 
35
  **Output:** arts, culture, entertainment and media
36
 
37
  # Performance
@@ -61,15 +73,6 @@ See the performance (accuracy) for each label below:
61
  - Weather: 1.0
62
  - Religion: 0.0
63
 
64
- ## Model description
65
-
66
- The model is intended to categorize Norwegian, Swedish and English news content within the specified 16 categories but is a test model for demonstration purposes.
67
- It needs more data within several categories to provide 100% value but it will outperform Claude Haiku and GPT-3.5 on this use case.
68
-
69
- ## Intended uses & limitations
70
-
71
- Use it to categorize news texts. Only set the category if the value is at least 60% for the label, otherwise the model is uncertain.
72
-
73
  ## Training and evaluation data
74
 
75
  Trained with the trainer, setting a learning rate of 2e-05 and batch size of 16 for 3 epochs.
 
23
 
24
  The model has been fine-tuned on a dataset that is greatly skewed, but has been slightly augmented to stabilize it.
25
 
26
+ ## Model description
27
+
28
+ The model is intended to categorize Norwegian, Swedish and English news content within the specified 16 categories but is a test model for demonstration purposes.
29
+ It needs more data within several categories to provide 100% value but it will outperform Claude Haiku and GPT-3.5 on this use case.
30
+
31
+ ## Intended uses & limitations
32
+
33
+ Use it to categorize news texts. Only set the category if the value is at least 60% for the label, otherwise the model is uncertain.
34
+
35
  # Test examples
36
 
37
  **Input:** Mann siktet for drapsforsøk på Slovakias statsministeren
38
+
39
  **Output:** crime, law and justice
40
 
41
  **Input:** Tre døde i kioskbrann i Tyskland
42
+
43
+ **Output:** disaster, accident, and emergency incident
44
 
45
  **Input:** Kultfilm får Netflix-oppfølger. Kultfilmen «Happy Gilmore» fra 1996 får en oppfølger på Netflix. Det røper strømmetjenesten selv på X, tidligere Twitter. –Happy Gilmore er tilbake!
46
+
47
  **Output:** arts, culture, entertainment and media
48
 
49
  # Performance
 
73
  - Weather: 1.0
74
  - Religion: 0.0
75
 
 
 
 
 
 
 
 
 
 
76
  ## Training and evaluation data
77
 
78
  Trained with the trainer, setting a learning rate of 2e-05 and batch size of 16 for 3 epochs.