|
--- |
|
license: apache-2.0 |
|
base_model: albert/albert-base-v2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: classify-clickbait-titll |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# classify-clickbait-titll |
|
|
|
This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0173 |
|
- Accuracy: 0.9951 |
|
- F1: 0.9951 |
|
- Precision: 0.9951 |
|
- Recall: 0.9951 |
|
- Accuracy Label Clickbait: 0.9866 |
|
- Accuracy Label Factual: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Clickbait | Accuracy Label Factual | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------------------------:|:----------------------:| |
|
| 0.0561 | 0.4831 | 100 | 0.0488 | 0.9927 | 0.9927 | 0.9927 | 0.9927 | 0.9933 | 0.9923 | |
|
| 0.0037 | 0.9662 | 200 | 0.0097 | 0.9988 | 0.9988 | 0.9988 | 0.9988 | 0.9967 | 1.0 | |
|
| 0.0012 | 1.4493 | 300 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0012 | 1.9324 | 400 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0433 | 2.4155 | 500 | 0.0020 | 0.9988 | 0.9988 | 0.9988 | 0.9988 | 0.9967 | 1.0 | |
|
| 0.0003 | 2.8986 | 600 | 0.0167 | 0.9951 | 0.9951 | 0.9951 | 0.9951 | 0.9866 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|