complete: train_size: {train_size}, batch_size: {batch_size}, per_epoch_steps: {per_epoch_steps}, epochs: {epochs}, epoch_total_steps: {epoch_total_steps}
6e16d2c
verified
license: gemma | |
base_model: google/gemma-2b | |
tags: | |
- generated_from_trainer | |
metrics: | |
- rouge | |
model-index: | |
- name: gemma-2b-coedit | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# gemma-2b-coedit | |
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.7456 | |
- Rouge1: 0.5006 | |
- Rouge2: 0.3991 | |
- Rougel: 0.4788 | |
- Rougelsum: 0.4786 | |
- Sacreblue: 20.7764 | |
- Memory Used: 79283.5 | |
- Cuda Allocated: 9625.1006 | |
- Cuda Reserved: 73102.0 | |
- Ram Usage: 10024.6953 | |
- Em: 0.0 | |
- Gen Len: 101.5333 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 35 | |
- eval_batch_size: 8 | |
- seed: 42 | |
- gradient_accumulation_steps: 4 | |
- total_train_batch_size: 140 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- lr_scheduler_warmup_steps: 1 | |
- num_epochs: 2 | |
- mixed_precision_training: Native AMP | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Sacreblue | Memory Used | Cuda Allocated | Cuda Reserved | Ram Usage | Em | Gen Len | | |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:---------:|:-----------:|:--------------:|:-------------:|:----------:|:---:|:--------:| | |
| 0.5426 | 0.22 | 100 | 0.7076 | 0.3807 | 0.297 | 0.3623 | 0.3621 | 18.8513 | 69159.5 | 9625.1431 | 62980.0 | 5073.7852 | 0.0 | 101.5333 | | |
| 0.5051 | 0.44 | 200 | 0.6849 | 0.4094 | 0.3207 | 0.3907 | 0.3905 | 21.1175 | 67317.5 | 9625.1196 | 61138.0 | 5067.1328 | 0.0 | 101.5333 | | |
| 0.4909 | 0.66 | 300 | 0.6735 | 0.4943 | 0.3926 | 0.473 | 0.4729 | 11.0979 | 67319.5 | 9625.1182 | 61138.0 | 9820.3711 | 0.0 | 101.5333 | | |
| 0.4804 | 0.88 | 400 | 0.6672 | 0.4995 | 0.4004 | 0.4796 | 0.4795 | 24.1464 | 67319.5 | 9625.1079 | 61138.0 | 9803.6172 | 0.0 | 101.5333 | | |
| 0.2842 | 1.1 | 500 | 0.7475 | 0.5011 | 0.3995 | 0.4792 | 0.4792 | 27.3521 | 79283.5 | 9625.0977 | 73102.0 | 9845.9766 | 0.0 | 101.5333 | | |
| 0.2471 | 1.32 | 600 | 0.7447 | 0.4908 | 0.3906 | 0.4694 | 0.4693 | 24.0058 | 79283.5 | 9625.1123 | 73102.0 | 9916.7539 | 0.0 | 101.5333 | | |
| 0.2422 | 1.54 | 700 | 0.7361 | 0.4967 | 0.3954 | 0.4749 | 0.4749 | 21.4519 | 79283.5 | 9625.1196 | 73102.0 | 9910.2695 | 0.0 | 101.5333 | | |
| 0.2354 | 1.76 | 800 | 0.7443 | 0.4882 | 0.3882 | 0.467 | 0.4669 | 19.4531 | 79283.5 | 9625.124 | 73102.0 | 10050.582 | 0.0 | 101.5333 | | |
| 0.2334 | 1.98 | 900 | 0.7456 | 0.5006 | 0.3991 | 0.4788 | 0.4786 | 20.7764 | 79283.5 | 9625.1006 | 73102.0 | 10024.6953 | 0.0 | 101.5333 | | |
### Framework versions | |
- Transformers 4.39.3 | |
- Pytorch 2.2.2 | |
- Datasets 2.18.0 | |
- Tokenizers 0.15.2 | |