redpajama-3b-chat / README.md
ikala-ray's picture
Update README.md
f8eac2d
|
raw
history blame
4.94 kB
---
license: cc-by-nc-2.0
language:
- en
- zh
- ja
tags:
- sft
pipeline_tag: text-generation
widget:
- text: >-
<|prompter|>What is a meme, and what's the history behind this
word?<|endoftext|><|assistant|>
- text: <|prompter|>What's the Earth total population<|endoftext|><|assistant|>
- text: >-
<|prompter|>Write a story about future of AI
development<|endoftext|><|assistant|>
datasets:
- OpenAssistant/oasst1
- databricks/databricks-dolly-15k
- anon8231489123/ShareGPT_Vicuna_unfiltered
- LIUM/tedlium
- theblackcat102/joke_explaination
---
# Redpajama-3B SFT model
![](https://huggingface.co/ikala/redpajama-3b-chat/resolve/main/redpajama-example.png)
It is based on a RedPajama's 3B that was fine-tuned on human demonstrations
of assistant conversations collected through the
[https://open-assistant.io/](https://open-assistant.io/) human feedback web
app before April 12, 2023.
supervised finetune on sequence length of 5120
## Model Details
- **Developed by:** [Open-Assistant Contributors](https://open-assistant.io/team) and [iKala](https://ikala.ai/)
- **Model type:** Transformer-based Language Model
- **Language:** English, Chinese, Japanese
- **Finetuned from:** [togethercomputer/RedPajama-INCITE-Base-3B-v1](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-3B-v1)
- **Code:** [Open-Assistant/model/model_training](https://github.com/LAION-AI/Open-Assistant/tree/main/model/model_training)
- **License:** Non commercial
## Prompting
Two special tokens are used to mark the beginning of user and assistant turns:
`<|prompter|>` and `<|assistant|>`. Each turn ends with a `<|endoftext|>` token.
Input prompt example:
```
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
```
The input ends with the `<|assistant|>` token to signal that the model should
start generating the assistant reply.
## Benchmark
| model | MMLU | BBH | Humaneval @10 |
|---|---|---|---|
| [ikala/redpajama-3b-chat](https://huggingface.co/ikala/redpajama-3b-chat) | 24.6 | 29.3 | 4.8 |
| [ikala/bloom-zh-3b-chat](https://huggingface.co/ikala/bloom-zh-3b-chat) | 31.4 | 30.2 | 0.0 |
| llama-7b (reference) | 30.9 | 27.6 | 10.3 |
## Dev Details
- base model: [togethercomputer/RedPajama-INCITE-Base-3B-v1](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-3B-v1)
- checkpoint: 1 epoch (6000 steps)
- hardware: NVIDIA RTX A6000 x 4
command: `deepspeed trainer_sft.py --configs defaults redpajama-3b datasets --num_train_epochs 2 --deepspeed`
data:
```
datasets:
- wmt2019_zh-en:
max_val_set: 1000
max_train_set: 20000
- ted_trans_en-ja:
max_val_set: 1000
max_train_set: 20000
- ted_trans_zh-ja:
max_val_set: 1000
max_train_set: 20000
- ikala:
input_file_path: export_conversation_v4.4.jsonl
val_split: 0.05
- dolly15k:
val_split: 0.05
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk,zh,ja,th,ko"
input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
val_split: 0.05
- joke
- gsm8k
- webgpt
```
with internal datasets `ikala` so if you try to reproduce please remove the dataset
redpajama-3b:
```
redpajama-3b:
dtype: fp16
log_dir: "redpajama_3b"
learning_rate: 1e-5
model_name: saved_models/RedPajama-INCITE-Base-3B-v1
output_dir: ikala_v4_3b
weight_decay: 0.0
max_length: 8196
warmup_steps: 2000
gradient_checkpointing: true
gradient_accumulation_steps: 32
per_device_train_batch_size: 1
per_device_eval_batch_size: 2
eval_steps: 500
save_steps: 1000
num_train_epochs: 8
save_total_limit: 2
deepspeed_config: configs/zero3_config_sft.json
```
zero config:
```
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"warmup_type": "linear",
"total_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 3,
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
```