ihanif's picture
update model card README.md
eb46c02
|
raw
history blame
2.34 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: openai/whisper-small
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: fleurs
          config: ps_af
          split: test
          args: ps_af
        metrics:
          - name: Wer
            type: wer
            value: 66.00332929782083

openai/whisper-small

This model is a fine-tuned version of openai/whisper-small on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0277
  • Wer: 66.0033

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-07
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.0871 14.29 100 2.0102 230.2739
1.465 28.57 200 1.4969 137.2427
1.1617 42.86 300 1.2716 76.3242
1.0019 57.14 400 1.1645 71.3756
0.9052 71.43 500 1.1051 69.7866
0.8334 85.71 600 1.0691 68.2657
0.7838 100.0 700 1.0483 67.1686
0.7539 114.29 800 1.0363 66.4195
0.7377 128.57 900 1.0297 66.2001
0.7325 142.86 1000 1.0277 66.0033

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2