Edit model card

Protein solubility is a critical factor in both pharmaceutical research and production processes, as it can significantly impact the quality and function of a protein.
This is an example for finetuning ibm/biomed.omics.bl.sm-ted-458m for protein solubility prediction (binary classification) based solely on the amino acid sequence.

The benchmark defined in: https://academic.oup.com/bioinformatics/article/34/15/2605/4938490
Data retrieved from: https://zenodo.org/records/1162886

Model Summary

Usage

Using ibm/biomed.omics.bl.sm.ma-ted-458m requires installing https://github.com/BiomedSciAI/biomed-multi-alignment

pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git

A simple example for a task already supported by ibm/biomed.omics.bl.sm.ma-ted-458m:

import os

from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp

from mammal.examples.protein_solubility.task import ProteinSolubilityTask
from mammal.keys import CLS_PRED, SCORES
from mammal.model import Mammal

# Load Model
model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility")
model.eval()

# Load Tokenizer
tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility")

# convert to MAMMAL style
sample_dict = {"protein_seq": protein_seq}
sample_dict = ProteinSolubilityTask.data_preprocessing(
    sample_dict=sample_dict,
    protein_sequence_key="protein_seq",
    tokenizer_op=tokenizer_op,
    device=model.device,
)

# running in generate mode
batch_dict = model.generate(
    [sample_dict],
    output_scores=True,
    return_dict_in_generate=True,
    max_new_tokens=5,
)

# Post-process the model's output
ans = ProteinSolubilityTask.process_model_output(
    tokenizer_op=tokenizer_op,
    decoder_output=batch_dict[CLS_PRED][0],
    decoder_output_scores=batch_dict[SCORES][0],
)

# Print prediction
print(f"{ans=}")

For more advanced usage, see our detailed example at: on https://github.com/BiomedSciAI/biomed-multi-alignment

Citation

If you found our work useful, please consider giving a star to the repo and cite our paper:

@misc{shoshan2024mammalmolecularaligned,
      title={MAMMAL -- Molecular Aligned Multi-Modal Architecture and Language}, 
      author={Yoel Shoshan and Moshiko Raboh and Michal Ozery-Flato and Vadim Ratner and Alex Golts and Jeffrey K. Weber and Ella Barkan and Simona Rabinovici-Cohen and Sagi Polaczek and Ido Amos and Ben Shapira and Liam Hazan and Matan Ninio and Sivan Ravid and Michael M. Danziger and Joseph A. Morrone and Parthasarathy Suryanarayanan and Michal Rosen-Zvi and Efrat Hexter},
      year={2024},
      eprint={2410.22367},
      archivePrefix={arXiv},
      primaryClass={q-bio.QM},
      url={https://arxiv.org/abs/2410.22367}, 
}
Downloads last month
30
Safetensors
Model size
458M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility

Finetuned
(2)
this model

Collection including ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility