|
--- |
|
license: cc-by-nc-sa-4.0 |
|
datasets: |
|
- nlpai-lab/kullm-v2 |
|
language: |
|
- ko |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
κ΅μ‘μ©μΌλ‘ νμ΅ ν κ°λ¨ν instruction fine-tuning λͺ¨λΈ (updated 2023/08/06) |
|
|
|
- Pretrained model: skt/kogpt2-base-v2 (https://github.com/SKT-AI/KoGPT2) |
|
- Training data: kullm-v2(https://huggingface.co/datasets/nlpai-lab/kullm-v2) |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM |
|
from transformers import PreTrainedTokenizerFast |
|
|
|
tokenizer = PreTrainedTokenizerFast.from_pretrained("hyunjae/skt-kogpt2-kullm-v2", |
|
bos_token='</s>', eos_token='</s>', unk_token='<unk>', |
|
pad_token='<pad>', mask_token='<mask>', padding_side="right", model_max_length=512) |
|
model = AutoModelForCausalLM.from_pretrained('hyunjae/skt-kogpt2-kullm-v2').to('cuda') |
|
|
|
PROMPT= "### system:μ¬μ©μμ μ§λ¬Έμ λ§λ μ μ ν μλ΅μ μμ±νμΈμ.\n### μ¬μ©μ:{instruction}\n### μλ΅:" |
|
text = PROMPT.format_map({'instruction':"μλ
? λκ° ν μ μλκ² λμΌ?"}) |
|
input_ids = tokenizer.encode(text, return_tensors='pt').to(model.device) |
|
|
|
gen_ids = model.generate(input_ids, |
|
repetition_penalty=2.0, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
bos_token_id=tokenizer.bos_token_id, |
|
num_beams=4, |
|
no_repeat_ngram_size=4, |
|
max_new_tokens=128, |
|
do_sample=True, |
|
top_k=50) |
|
|
|
|
|
generated = tokenizer.decode(gen_ids[0]) |
|
print(generated) |
|
|
|
``` |