metadata
license: apache-2.0
base_model: Langboat/mengzi-bert-base-fin
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mengzi-bert-base-fin-wallstreetcn-morning-news-market-overview-SSE50-12
results: []
mengzi-bert-base-fin-wallstreetcn-morning-news-market-overview-SSE50-12
This model is a fine-tuned version of Langboat/mengzi-bert-base-fin on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.9030
- Accuracy: 0.7879
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 34 | 2.2065 | 0.6667 |
No log | 2.0 | 68 | 2.7159 | 0.7273 |
No log | 3.0 | 102 | 2.6006 | 0.6970 |
No log | 4.0 | 136 | 2.2278 | 0.7273 |
No log | 5.0 | 170 | 3.0872 | 0.6667 |
No log | 6.0 | 204 | 1.7348 | 0.7273 |
No log | 7.0 | 238 | 1.8437 | 0.7879 |
No log | 8.0 | 272 | 1.7299 | 0.7576 |
No log | 9.0 | 306 | 1.9420 | 0.7879 |
No log | 10.0 | 340 | 1.9030 | 0.7879 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3