metadata
tags:
- flair
- entity-mention-linker
sapbert-ncbi-taxonomy-no-ab3p
Biomedical Entity Mention Linking for UMLS. We use this model for species since NCBI Taxonomy is contained in UMLS:
- Model: cambridgeltl/SapBERT-from-PubMedBERT-fulltext
- Dictionary: NCBI Taxonomy (See FTP)
NOTE: This model variant does not perform abbreviation resolution via A3bP
Demo: How to use in Flair
Requires:
- Flair>=0.14.0 (
pip install flair
orpip install git+https://github.com/flairNLP/flair.git
)
from flair.data import Sentence
from flair.models import Classifier, EntityMentionLinker
from flair.tokenization import SciSpacyTokenizer
sentence = Sentence(
"The mutation in the ABCD1 gene causes X-linked adrenoleukodystrophy, "
"a neurodegenerative disease, which is exacerbated by exposure to high "
"levels of mercury in dolphin populations.",
use_tokenizer=SciSpacyTokenizer()
)
# load hunflair to detect the entity mentions we want to link.
tagger = Classifier.load("hunflair-species")
tagger.predict(sentence)
# load the linker and dictionary
linker = EntityMentionLinker.load("species-linker-no-abbres")
linker.predict(sentence)
# print the results for each entity mention:
for span in sentence.get_spans(tagger.label_type):
for link in span.get_labels(linker.label_type):
print(f"{span.text} -> {link.value}")
As an alternative to downloading the already precomputed model (much storage). You can also build the model and compute the embeddings for the dataset using:
from flair.models.entity_mention_linking import BioSynEntityPreprocessor
linker = EntityMentionLinker.build("cambridgeltl/SapBERT-from-PubMedBERT-fulltext", dictionary_name_or_path="ncbi-taxonomy", entity_type="species", preprocessor=BioSynEntityPreprocessor(), hybrid_search=False)
This will reduce the download requirements, at the cost of computation. Note hybrid_search=False
as SapBERT unlike BioSyn is trained only for dense retrieval.