test-bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0600
- Precision: 0.9355
- Recall: 0.9514
- F1: 0.9433
- Accuracy: 0.9868
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0849 | 1.0 | 1756 | 0.0713 | 0.9144 | 0.9366 | 0.9253 | 0.9817 |
0.0359 | 2.0 | 3512 | 0.0658 | 0.9346 | 0.9500 | 0.9422 | 0.9860 |
0.0206 | 3.0 | 5268 | 0.0600 | 0.9355 | 0.9514 | 0.9433 | 0.9868 |
Framework versions
- Transformers 4.11.0.dev0
- Pytorch 1.8.1+cu111
- Datasets 1.12.1.dev0
- Tokenizers 0.10.3
- Downloads last month
- 58,225
Model tree for huggingface-course/bert-finetuned-ner
Dataset used to train huggingface-course/bert-finetuned-ner
Spaces using huggingface-course/bert-finetuned-ner 38
Evaluation results
- Precision on conll2003self-reported0.935
- Recall on conll2003self-reported0.951
- F1 on conll2003self-reported0.943
- Accuracy on conll2003self-reported0.987
- Accuracy on conll2003test set verified0.900
- Precision on conll2003test set verified0.929
- Recall on conll2003test set verified0.916
- F1 on conll2003test set verified0.922
- loss on conll2003test set verified0.871