File size: 2,279 Bytes
ce087b2 fa5a3c6 f7092b9 eb75edf f7092b9 eb75edf f7092b9 59397a5 fa5a3c6 eb75edf fa5a3c6 eb75edf f7092b9 eb75edf fa5a3c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
---
# Model Card for Deita Complexity Scorer
Deita is an open-sourced project designed to facilitate **Automatic Data Selection** for instruction tuning in Large Language Models (LLMs).
Deita Complexity Scorer is a tool for automatically annotating the Instruction Complexity of SFT data.
## Model description
- **Model type:** Model fine tuned to automatically annotate the Instruction Complexity
- **Language(s) (NLP):** Primarily English
- **Finetuned from model:** Llama-1-13b-hf
### Model Sources
- **Repository:** https://github.com/hkust-nlp/deita
- **Model Family:** Other models and the dataset are found in the [Deita collection](https://huggingface.co/collections/hkust-nlp/deita-6569c198c174808d94cf5bd4).
## Usage
Please use the following format to score the complexity of the Instruction:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import numpy as np
from scipy.special import softmax
model_name = "hkust-nlp/Deita-Complexity-Scorer"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
def infer_complexity(model, tokenizer, input_text):
complexity_template = ("You are a helpful assistant. Please identify the complexity score of the following user query. \n##Query: {instruction} \n##Complexity: ")
user_input = complexity_template.format(instruction=input_text)
input_ids = tokenizer.encode(user_input, return_tensors="pt")
max_length = 512
outputs = model.generate(input_ids, max_length=512, num_return_sequences=1, return_dict_in_generate=True, output_scores=True)
logprobs_list = outputs.scores[0][0]
score_logits = []
id2score = {
29896: "1",
29906: "2",
29941: "3",
29946: "4",
29945: "5",
29953: "6"
}
score_template = np.array([1,2,3,4,5,6])
for k in id2score:
score_logits.append(logprobs_list[k])
score_logits = np.array(score_logits)
score_npy = softmax(score_logits, axis=0)
score_npy = score_npy * score_template
score_npy = np.sum(score_npy, axis=0)
return score_npy
# example input
input_text = "write a performance review for a junior data scientist"
complexity_score = infer_complexity(model, tokenizer, input_text)
print(complexity_score)
``` |