File size: 2,279 Bytes
ce087b2
 
 
fa5a3c6
f7092b9
eb75edf
f7092b9
eb75edf
f7092b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59397a5
fa5a3c6
 
 
 
 
 
 
 
 
 
eb75edf
 
 
 
 
 
 
 
 
fa5a3c6
 
 
 
 
 
 
eb75edf
 
 
 
 
 
 
 
 
 
f7092b9
eb75edf
 
 
 
 
 
fa5a3c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
---

# Model Card for Deita Complexity Scorer

Deita is an open-sourced project designed to facilitate **Automatic Data Selection** for instruction tuning in Large Language Models (LLMs).

Deita Complexity Scorer is a tool for automatically annotating the Instruction Complexity of SFT data.

## Model description

- **Model type:** Model fine tuned to automatically annotate the Instruction Complexity
- **Language(s) (NLP):** Primarily English
- **Finetuned from model:** Llama-1-13b-hf

### Model Sources

- **Repository:** https://github.com/hkust-nlp/deita
- **Model Family:** Other models and the dataset are found in the [Deita collection](https://huggingface.co/collections/hkust-nlp/deita-6569c198c174808d94cf5bd4).

## Usage

Please use the following format to score the complexity of the Instruction:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import numpy as np
from scipy.special import softmax
model_name = "hkust-nlp/Deita-Complexity-Scorer"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)


def infer_complexity(model, tokenizer, input_text):
	complexity_template = ("You are a helpful assistant. Please identify the complexity score of the following user query. \n##Query: {instruction}  \n##Complexity: ")
	user_input = complexity_template.format(instruction=input_text)
	input_ids = tokenizer.encode(user_input, return_tensors="pt")
	max_length = 512
	outputs = model.generate(input_ids, max_length=512, num_return_sequences=1, return_dict_in_generate=True, output_scores=True)
	logprobs_list = outputs.scores[0][0]
	score_logits = []
	id2score = {
        29896: "1",
        29906: "2",
        29941: "3",
        29946: "4",
        29945: "5",
        29953: "6"
    }
	score_template = np.array([1,2,3,4,5,6])
	for k in id2score:
	    score_logits.append(logprobs_list[k])
	score_logits = np.array(score_logits)
	score_npy = softmax(score_logits, axis=0)
	score_npy = score_npy * score_template

	score_npy = np.sum(score_npy, axis=0)
	return score_npy

# example input
input_text = "write a performance review for a junior data scientist"
complexity_score = infer_complexity(model, tokenizer, input_text)

print(complexity_score)


```