AndrewZeng
commited on
Commit
•
fa5a3c6
1
Parent(s):
6583e5b
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,49 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
## Usage Code
|
6 |
+
|
7 |
+
```python
|
8 |
+
import torch
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
+
import numpy as np
|
11 |
+
from scipy.special import softmax
|
12 |
+
# 选择模型和模型名称(例如,这里使用GPT-2模型)
|
13 |
+
model_name = "hkust-nlp/Deita-Complexity-Scorer"
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
16 |
+
|
17 |
+
|
18 |
+
complexity_template = ("You are a helpful assistant. Please identify the complexity score of the following user query. \n##Query: {instruction} \n##Complexity: ")
|
19 |
+
# 输入文本
|
20 |
+
input_text = "write a performance review for a junior data scientist"
|
21 |
+
|
22 |
+
|
23 |
+
user_input = complexity_template.format(instruction=input_text)
|
24 |
+
|
25 |
+
# 将输入文本编码为tokens
|
26 |
+
input_ids = tokenizer.encode(user_input, return_tensors="pt")
|
27 |
+
|
28 |
+
# 生成文本
|
29 |
+
max_length = 512 # 设置生成文本的最大长度
|
30 |
+
outputs = model.generate(input_ids, max_length=512, num_return_sequences=1, return_dict_in_generate=True, output_scores=True)
|
31 |
+
logprobs_list = outputs.scores[0][0]
|
32 |
+
score_logits = []
|
33 |
+
id2score = {
|
34 |
+
29896: "1",
|
35 |
+
29906: "2",
|
36 |
+
29941: "3",
|
37 |
+
29946: "4",
|
38 |
+
29945: "5",
|
39 |
+
29953: "6"
|
40 |
+
}
|
41 |
+
score_template = np.array([1,2,3,4,5,6])
|
42 |
+
for k in id2score:
|
43 |
+
score_logits.append(logprobs_list[k])
|
44 |
+
score_logits = np.array(score_logits)
|
45 |
+
score_npy = softmax(score_logits, axis=0)
|
46 |
+
score_npy = score_npy * score_template
|
47 |
+
|
48 |
+
score_npy = np.sum(score_npy, axis=0)
|
49 |
+
```
|