OpenBioM7-7B-TIES / README.md
hfghfghg's picture
Upload folder using huggingface_hub
f5cba30 verified
---
tags:
- merge
- mergekit
- lazymergekit
- BioMistral/BioMistral-7B-TIES
- openchat/openchat-3.5-0106
- liminerity/M7-7b
base_model:
- BioMistral/BioMistral-7B-TIES
- openchat/openchat-3.5-0106
- liminerity/M7-7b
---
# OpenBioM7-7B-TIES
OpenBioM7-7B-TIES is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [BioMistral/BioMistral-7B-TIES](https://huggingface.co/BioMistral/BioMistral-7B-TIES)
* [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106)
* [liminerity/M7-7b](https://huggingface.co/liminerity/M7-7b)
## 🧩 Configuration
```yaml
models:
- model: mistralai/Mistral-7B-Instruct-v0.1
- model: BioMistral/BioMistral-7B-TIES
parameters:
density: 0.5
weight: 1.0
- model: openchat/openchat-3.5-0106
parameters:
density: 0.5
weight: 1.0
- model: liminerity/M7-7b
parameters:
density: 0.5
weight: 1.0
merge_method: ties
base_model: mistralai/Mistral-7B-Instruct-v0.1
parameters:
normalize: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "hfghfghg/OpenBioM7-7B-TIES"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```