For Inference:
- Download dependencies:
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
pip install --no-deps trl peft accelerate bitsandbytes triton xformers
- Infer part:
from operator import index
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048 # Choose any! Llama 3 is up to 8k
dtype = None
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
alpaca_prompt = """ حلل العاطفة متاع النص الموجود بين الأقواس المربعة، وقرّر إذا كان إيجابي ولا سلبي، ورجع الجواب كعلامة عاطفية متطابقة "إيجابي" ولا "سلبي".
### Instruction:
{}
### Response:
{}"""
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "hedhoud12/Llama-3.2-1B-Instruct_Tunisian_sentiment_analysis", # your trained model
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model)
inputs = tokenizer(
[
alpaca_prompt.format(
"برا وليدي رابي يناجحك", # instruction
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)[0].split("### Response:")[1].strip()
- The result will be like :
==((====))== Unsloth 2024.9.post4: Fast Llama patching. Transformers = 4.44.2.
\\ /| GPU: Tesla T4. Max memory: 14.748 GB. Platform = Linux.
O^O/ \_/ \ Pytorch: 2.4.1+cu121. CUDA = 7.5. CUDA Toolkit = 12.1.
\ / Bfloat16 = FALSE. FA [Xformers = 0.0.28.post1. FA2 = False]
"-____-" Free Apache license: http://github.com/unslothai/unsloth
Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!
كلام إيجابي<|eot_id|>