|
--- |
|
license: mit |
|
base_model: facebook/xlm-v-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- tweet_sentiment_multilingual |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: scenario-TCR-XLMV_data-cardiffnlp_tweet_sentiment_multilingual_all_gamma2 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: tweet_sentiment_multilingual |
|
type: tweet_sentiment_multilingual |
|
config: all |
|
split: validation |
|
args: all |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.3333333333333333 |
|
- name: F1 |
|
type: f1 |
|
value: 0.16666666666666666 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# scenario-TCR-XLMV_data-cardiffnlp_tweet_sentiment_multilingual_all_gamma2 |
|
|
|
This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the tweet_sentiment_multilingual dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0986 |
|
- Accuracy: 0.3333 |
|
- F1: 0.1667 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 77 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 1.1004 | 1.09 | 500 | 1.0987 | 0.3333 | 0.1667 | |
|
| 1.0999 | 2.17 | 1000 | 1.0989 | 0.3333 | 0.1667 | |
|
| 1.0996 | 3.26 | 1500 | 1.0992 | 0.3333 | 0.1667 | |
|
| 1.0993 | 4.35 | 2000 | 1.0987 | 0.3333 | 0.1667 | |
|
| 1.0993 | 5.43 | 2500 | 1.0990 | 0.3333 | 0.1667 | |
|
| 1.0998 | 6.52 | 3000 | 1.0986 | 0.3333 | 0.1667 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|