metadata
license: mit
base_model: facebook/xlm-v-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: scenario-TCR-XLMV-XCOPA-4_data-xcopa_all
results: []
scenario-TCR-XLMV-XCOPA-4_data-xcopa_all
This model is a fine-tuned version of facebook/xlm-v-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6931
- Accuracy: 0.5008
- F1: 0.4628
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 4824
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 500
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.38 | 5 | 0.6932 | 0.4642 | 0.4462 |
No log | 0.77 | 10 | 0.6932 | 0.485 | 0.4560 |
No log | 1.15 | 15 | 0.6932 | 0.4992 | 0.4551 |
No log | 1.54 | 20 | 0.6932 | 0.4983 | 0.4467 |
No log | 1.92 | 25 | 0.6932 | 0.4958 | 0.4444 |
No log | 2.31 | 30 | 0.6932 | 0.5075 | 0.4661 |
No log | 2.69 | 35 | 0.6931 | 0.5042 | 0.4625 |
No log | 3.08 | 40 | 0.6931 | 0.4967 | 0.4597 |
No log | 3.46 | 45 | 0.6931 | 0.4908 | 0.4636 |
No log | 3.85 | 50 | 0.6932 | 0.5008 | 0.4647 |
No log | 4.23 | 55 | 0.6931 | 0.5067 | 0.4752 |
No log | 4.62 | 60 | 0.6931 | 0.5033 | 0.4688 |
No log | 5.0 | 65 | 0.6932 | 0.4875 | 0.4524 |
No log | 5.38 | 70 | 0.6932 | 0.4517 | 0.4156 |
No log | 5.77 | 75 | 0.6932 | 0.4667 | 0.4286 |
No log | 6.15 | 80 | 0.6932 | 0.4683 | 0.4334 |
No log | 6.54 | 85 | 0.6932 | 0.47 | 0.4382 |
No log | 6.92 | 90 | 0.6932 | 0.4692 | 0.4437 |
No log | 7.31 | 95 | 0.6931 | 0.4967 | 0.4766 |
No log | 7.69 | 100 | 0.6931 | 0.53 | 0.5138 |
No log | 8.08 | 105 | 0.6931 | 0.4858 | 0.4686 |
No log | 8.46 | 110 | 0.6932 | 0.4767 | 0.4452 |
No log | 8.85 | 115 | 0.6931 | 0.4617 | 0.4353 |
No log | 9.23 | 120 | 0.6931 | 0.4683 | 0.4433 |
No log | 9.62 | 125 | 0.6931 | 0.4717 | 0.4429 |
No log | 10.0 | 130 | 0.6931 | 0.4858 | 0.4630 |
No log | 10.38 | 135 | 0.6931 | 0.4983 | 0.4872 |
No log | 10.77 | 140 | 0.6931 | 0.4958 | 0.4771 |
No log | 11.15 | 145 | 0.6931 | 0.5108 | 0.4846 |
No log | 11.54 | 150 | 0.6931 | 0.5075 | 0.4784 |
No log | 11.92 | 155 | 0.6931 | 0.5267 | 0.4883 |
No log | 12.31 | 160 | 0.6931 | 0.5142 | 0.4809 |
No log | 12.69 | 165 | 0.6931 | 0.5108 | 0.4873 |
No log | 13.08 | 170 | 0.6931 | 0.5075 | 0.4829 |
No log | 13.46 | 175 | 0.6931 | 0.5042 | 0.4758 |
No log | 13.85 | 180 | 0.6931 | 0.4825 | 0.4567 |
No log | 14.23 | 185 | 0.6931 | 0.4625 | 0.4337 |
No log | 14.62 | 190 | 0.6931 | 0.4783 | 0.4528 |
No log | 15.0 | 195 | 0.6931 | 0.4767 | 0.4510 |
No log | 15.38 | 200 | 0.6931 | 0.4675 | 0.4370 |
No log | 15.77 | 205 | 0.6931 | 0.4675 | 0.4370 |
No log | 16.15 | 210 | 0.6931 | 0.465 | 0.4368 |
No log | 16.54 | 215 | 0.6931 | 0.4792 | 0.4522 |
No log | 16.92 | 220 | 0.6931 | 0.4875 | 0.4591 |
No log | 17.31 | 225 | 0.6931 | 0.4892 | 0.4628 |
No log | 17.69 | 230 | 0.6931 | 0.4933 | 0.4591 |
No log | 18.08 | 235 | 0.6931 | 0.5325 | 0.4978 |
No log | 18.46 | 240 | 0.6931 | 0.5192 | 0.4750 |
No log | 18.85 | 245 | 0.6931 | 0.5142 | 0.4836 |
No log | 19.23 | 250 | 0.6931 | 0.5008 | 0.4628 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3