hajili's picture
Update README.md
1a524c2 verified
metadata
license: cc-by-nc-4.0
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
model-index:
  - name: roberta-base-azerbaijani
    results: []
datasets:
  - hajili/azerbaijani-various-corpus
language:
  - az
metrics:
  - perplexity

This model is a continued pre-trained version of xlm-roberta-base on a various cleaned community corpus. It achieves the following results on the evaluation set:

  • Loss: 1.1697

We thank Microsoft Accelerating Foundation Models Research Program for supporting our research. Authors: Mammad Hajili, Duygu Ataman

Model description

The model was trained on masked language model task on a single V100 GPU for 68 hours. For downstream tasks, it requires to be fine-tuned based on objective of the task.

Training and evaluation data

The training data is clean mix of various Azerbaijani corpus shared by the community.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.6126 0.2500 100910 1.4818
1.4961 0.5000 201820 1.4163
1.4324 0.7500 302730 1.3371
1.387 1.0000 403640 1.3070
1.3488 1.2500 504550 1.2649
1.323 1.5000 605460 1.2581
1.3006 1.7500 706370 1.2066
1.2866 2.0000 807280 1.2095
1.2646 2.2500 908190 1.2019
1.2492 2.5000 1009100 1.1779
1.2425 2.7500 1110010 1.1742
  • Validation loss at epoch 3: 1.1697
  • Perplexity at epoch 3: 3.22

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1