ktp-spoof-clip / README.md
habibi26's picture
Model save
fb6a8a0 verified
|
raw
history blame
2.61 kB
metadata
base_model: openai/clip-vit-base-patch32
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: ktp-spoof-clip
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9852941176470589

ktp-spoof-clip

This model is a fine-tuned version of openai/clip-vit-base-patch32 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0740
  • Accuracy: 0.9853

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8889 4 0.5501 0.8088
No log 2.0 9 0.3671 0.8529
0.5611 2.8889 13 0.3852 0.8235
0.5611 4.0 18 0.2422 0.9118
0.4558 4.8889 22 0.3534 0.8824
0.4558 6.0 27 0.1137 0.9412
0.3562 6.8889 31 0.5266 0.7941
0.3562 8.0 36 0.1918 0.9118
0.1201 8.8889 40 0.0301 1.0
0.1201 10.0 45 0.0450 0.9853
0.1201 10.8889 49 0.0327 0.9853
0.0604 12.0 54 0.0898 0.9706
0.0604 12.8889 58 0.0789 0.9853
0.0322 13.3333 60 0.0740 0.9853

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1