RoBERTa-ext-large-lora-updated-chinese-finetuned-ner
This model is a fine-tuned version of gyr66/RoBERTa-ext-large-chinese-finetuned-ner on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9586
- Precision: 0.7016
- Recall: 0.7518
- F1: 0.7258
- Accuracy: 0.9154
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0034 | 1.0 | 252 | 1.0787 | 0.6753 | 0.7523 | 0.7117 | 0.9121 |
0.0032 | 2.0 | 504 | 1.0376 | 0.6830 | 0.7490 | 0.7145 | 0.9141 |
0.0018 | 3.0 | 756 | 1.0547 | 0.6731 | 0.7573 | 0.7127 | 0.9126 |
0.0032 | 4.0 | 1008 | 1.0262 | 0.6829 | 0.7384 | 0.7096 | 0.9126 |
0.0027 | 5.0 | 1260 | 0.9613 | 0.6898 | 0.7445 | 0.7161 | 0.9118 |
0.0027 | 6.0 | 1512 | 0.9481 | 0.6780 | 0.7550 | 0.7145 | 0.9120 |
0.0019 | 7.0 | 1764 | 0.9328 | 0.6917 | 0.7513 | 0.7203 | 0.9150 |
0.0008 | 8.0 | 2016 | 0.9570 | 0.6976 | 0.7520 | 0.7238 | 0.9143 |
0.0005 | 9.0 | 2268 | 0.9586 | 0.7016 | 0.7518 | 0.7258 | 0.9154 |
0.0003 | 10.0 | 2520 | 0.9565 | 0.6945 | 0.7520 | 0.7221 | 0.9151 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0