Edit model card

Turkish News Text Classification

Turkish text classification model obtained by fine-tuning the Turkish bert model (dbmdz/bert-base-turkish-cased)

Dataset

Dataset consists of 11 classes were obtained from https://www.trthaber.com/. The model was created using the most distinctive 6 classes.

Dataset can be accessed at https://github.com/gurkan08/datasets/tree/master/trt_11_category.

label_dict = {
    'LABEL_0': 'ekonomi',
    'LABEL_1': 'spor',
    'LABEL_2': 'saglik',
    'LABEL_3': 'kultur_sanat',
    'LABEL_4': 'bilim_teknoloji',
    'LABEL_5': 'egitim'
}

70% of the data were used for training and 30% for testing.

train f1-weighted score = %97

test f1-weighted score = %94

Usage

from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("gurkan08/bert-turkish-text-classification")
model = AutoModelForSequenceClassification.from_pretrained("gurkan08/bert-turkish-text-classification")

nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)

text = ["Süper Lig'in 6. haftasında Sivasspor ile Çaykur Rizespor karşı karşıya geldi...",
"Son 24 saatte 69 kişi Kovid-19 nedeniyle yaşamını yitirdi, 1573 kişi iyileşti"]

out = nlp(text)

label_dict = {
 'LABEL_0': 'ekonomi',
 'LABEL_1': 'spor',
 'LABEL_2': 'saglik',
 'LABEL_3': 'kultur_sanat',
 'LABEL_4': 'bilim_teknoloji',
 'LABEL_5': 'egitim'
}

results = []
for result in out:
    result['label'] = label_dict[result['label']]
    results.append(result)
print(results)

# > [{'label': 'spor', 'score': 0.9992026090621948}, {'label': 'saglik', 'score': 0.9972177147865295}]
Downloads last month
69
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.