|
--- |
|
language: |
|
- it |
|
license: apache-2.0 |
|
library_name: transformers |
|
tags: |
|
- text-generation-inference |
|
- unsloth |
|
- llama |
|
- llama3.1 |
|
- trl |
|
- word-game |
|
- rebus |
|
- italian |
|
- word-puzzle |
|
- crossword |
|
datasets: |
|
- gsarti/eureka-rebus |
|
base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit |
|
|
|
model-index: |
|
- name: gsarti/llama-3.1-8b-rebus-solver-fp16 |
|
results: |
|
- task: |
|
type: verbalized-rebus-solving |
|
name: Verbalized Rebus Solving |
|
dataset: |
|
type: gsarti/eureka-rebus |
|
name: EurekaRebus |
|
config: llm_sft |
|
split: test |
|
revision: 0f24ebc3b66cd2f8968077a5eb058be1d5af2f05 |
|
metrics: |
|
- type: exact_match |
|
value: 0.59 |
|
name: First Pass Exact Match |
|
- type: exact_match |
|
value: 0.56 |
|
name: Solution Exact Match |
|
--- |
|
|
|
# LLaMA-3.1 8B Verbalized Rebus Solver 🇮🇹 |
|
|
|
This model is a parameter-efficient fine-tuned version of LLaMA-3.1 8B trained for verbalized rebus solving in Italian, as part of the [release](https://huggingface.co/collections/gsarti/verbalized-rebus-clic-it-2024-66ab8f11cb04e68bdf4fb028) for our paper [Non Verbis, Sed Rebus: Large Language Models are Weak Solvers of Italian Rebuses](https://arxiv.org/abs/2408.00584). The task of verbalized rebus solving consists of converting an encrypted sequence of letters and crossword definitions into a solution phrase matching the word lengths specified in the solution key. An example is provided below. |
|
|
|
The model was trained in 4-bit precision for 5070 steps on the verbalized subset of the [EurekaRebus](https://huggingface.co/datasets/gsarti/eureka-rebus) using QLora via [Unsloth](https://github.com/unslothai/unsloth) and [TRL](https://github.com/huggingface/trl). This version has merged adapter weights in half precision, enabling out-of-the-box for usage with the `transformers` library. |
|
|
|
We also provide [adapter checkpoints through training](https://huggingface.co/gsarti/llama-3.1-8b-rebus-solver-adapters) and [8-bit GGUF](https://huggingface.co/gsarti/gsarti/llama-3.1-8b-rebus-solver-Q8_0-GGUF) versions of this model for analysis and local execution. |
|
|
|
## Using the Model |
|
|
|
The following example shows how to perform inference using Unsloth or Transformers: |
|
|
|
```python |
|
|
|
# With Unsloth (efficient, requires GPU) |
|
from unsloth import FastLanguageModel |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name = "gsarti/llama-3.1-8b-rebus-solver-fp16", |
|
max_seq_length = 1248, |
|
load_in_4bit = True, |
|
) |
|
|
|
# Or with Transformers |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("gsarti/llama-3.1-8b-rebus-solver-fp16") |
|
model = AutoModelForCausalLM.from_pretrained("gsarti/llama-3.1-8b-rebus-solver-fp16") |
|
|
|
# Inference |
|
verbalized_rebus = "[Materiale espulso dai vulcani] R O [Strumento del calzolaio] [Si trovano ai lati del bacino] C I [Si ingrassano con la polenta] E I N [Contiene scorte di cibi] B [Isola in francese]" |
|
solution_key = "1 ' 5 6 5 3 3 1 14" |
|
template = """<|begin_of_text|><|start_header_id|>user<|end_header_id|> |
|
|
|
Risolvi gli indizi tra parentesi per ottenere una prima lettura, e usa la chiave di lettura per ottenere la soluzione del rebus. |
|
|
|
Rebus: {rebus} |
|
Chiave risolutiva: {key}<|eot_id|><|start_header_id|>assistant<|end_header_id|>""" |
|
input = template.format(rebus=verbalized_rebus, key=solution_key) |
|
inputs = tokenizer(input, return_tensors="pt")["input_ids"] |
|
outputs = model.generate(input_ids = inputs, max_new_tokens = 500, use_cache = True) |
|
model_generations = tokenizer.batch_decode(outputs) |
|
print(model_generations[0]) |
|
|
|
# Procediamo alla risoluzione del rebus passo per passo: |
|
# - [Materiale espulso dai vulcani] = lava |
|
# - R O = R O |
|
# - [Strumento del calzolaio] = lesina |
|
# - [Si trovano ai lati del bacino] = anche |
|
# - C I = C I |
|
# - [Si ingrassano con la polenta] = oche |
|
# - E I N = E I N |
|
# - [Contiene scorte di cibi] = dispensa |
|
# - B = B |
|
# - [Isola in francese] = ile |
|
# |
|
# Prima lettura: lava R O lesina anche C I oche E I N silos B ile |
|
# |
|
# Ora componiamo la soluzione seguendo la chiave risolutiva: |
|
# 1 = L |
|
# ' = ' |
|
# 5 = avaro |
|
# 6 = lesina |
|
# 5 = anche |
|
# 3 = ciò |
|
# 3 = che |
|
# 1 = è |
|
# 14 = indispensabile |
|
# |
|
# Soluzione: L'avaro lesina anche ciò che è indispensabile |
|
``` |
|
|
|
See the official [code release](https://github.com/gsarti/verbalized-rebus) for more examples. |
|
|
|
### Local usage with Ollama |
|
|
|
A ready-to-use local version of this model is hosted on the [Ollama Hub](https://ollama.com/gsarti/llama3.1-8b-rebus-solver) and can be used as follows: |
|
|
|
```shell |
|
ollama run gsarti/llama3.1-8b-rebus-solver "Rebus: [Materiale espulso dai vulcani] R O [Strumento del calzolaio] [Si trovano ai lati del bacino] C I [Si ingrassano con la polenta] E I N [Contiene scorte di cibi] B [Isola in francese]\nChiave risolutiva: 1 ' 5 6 5 3 3 1 14" |
|
``` |
|
|
|
## Limitations |
|
|
|
**Lexical overfitting**: As remarked in the related publication, the model overfitted the set of definitions/answers for first pass words. As a result, words that were [explicitly witheld](https://huggingface.co/datasets/gsarti/eureka-rebus/blob/main/ood_words.txt) from the training set cause significant performance degradation when used as solutions for verbalized rebuses' definitions. You can compare model performances between [in-domain](https://huggingface.co/datasets/gsarti/eureka-rebus/blob/main/id_test.jsonl) and [out-of-domain](https://huggingface.co/datasets/gsarti/eureka-rebus/blob/main/ood_test.jsonl) test examples to verify this limitation. |
|
|
|
## Model curators |
|
|
|
For problems or updates on this model, please contact [[email protected]](mailto:[email protected]). |
|
|
|
### Citation Information |
|
|
|
If you use this model in your work, please cite our paper as follows: |
|
|
|
```bibtex |
|
@article{sarti-etal-2024-rebus, |
|
title = "Non Verbis, Sed Rebus: Large Language Models are Weak Solvers of Italian Rebuses", |
|
author = "Sarti, Gabriele and Caselli, Tommaso and Nissim, Malvina and Bisazza, Arianna", |
|
journal = "ArXiv", |
|
month = jul, |
|
year = "2024", |
|
volume = {abs/2408.00584}, |
|
url = {https://arxiv.org/abs/2408.00584}, |
|
} |
|
``` |
|
|
|
## Acknowledgements |
|
|
|
We are grateful to the [Associazione Culturale "Biblioteca Enigmistica Italiana - G. Panini"](http://www.enignet.it/home) for making its rebus collection freely accessible on the [Eureka5 platform](http://www.eureka5.it). |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |