gokuls's picture
End of training
9a6b694 verified
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-ic-slurp-no-pretrain
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-finetuned-ic-slurp-no-pretrain
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1033
- Accuracy: 0.3082
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 3.8949 | 1.0 | 527 | 3.8954 | 0.0717 |
| 3.8006 | 2.0 | 1055 | 3.8025 | 0.0810 |
| 3.7439 | 3.0 | 1582 | 3.7616 | 0.0821 |
| 3.7199 | 4.0 | 2110 | 3.6873 | 0.0925 |
| 3.6145 | 5.0 | 2637 | 3.6367 | 0.0980 |
| 3.542 | 6.0 | 3165 | 3.5391 | 0.1161 |
| 3.3305 | 7.0 | 3692 | 3.3986 | 0.1528 |
| 3.171 | 8.0 | 4220 | 3.2162 | 0.2022 |
| 2.9197 | 9.0 | 4747 | 3.0826 | 0.2344 |
| 2.6468 | 10.0 | 5275 | 2.9709 | 0.2643 |
| 2.4813 | 11.0 | 5802 | 2.9282 | 0.2880 |
| 2.1928 | 12.0 | 6330 | 2.9192 | 0.2943 |
| 1.9368 | 13.0 | 6857 | 2.9719 | 0.2974 |
| 1.693 | 14.0 | 7385 | 3.0304 | 0.3021 |
| 1.3964 | 15.0 | 7912 | 3.1033 | 0.3082 |
| 1.3051 | 16.0 | 8440 | 3.2700 | 0.2945 |
| 1.0794 | 17.0 | 8967 | 3.4284 | 0.3033 |
| 0.9993 | 18.0 | 9495 | 3.5327 | 0.2998 |
| 0.7641 | 19.0 | 10022 | 3.6907 | 0.2978 |
| 0.68 | 20.0 | 10550 | 3.8579 | 0.2984 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2