|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: wav2vec2-base-finetuned-ic-slurp-no-pretrain |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-base-finetuned-ic-slurp-no-pretrain |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.1033 |
|
- Accuracy: 0.3082 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 24 |
|
- eval_batch_size: 24 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 96 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 3.8949 | 1.0 | 527 | 3.8954 | 0.0717 | |
|
| 3.8006 | 2.0 | 1055 | 3.8025 | 0.0810 | |
|
| 3.7439 | 3.0 | 1582 | 3.7616 | 0.0821 | |
|
| 3.7199 | 4.0 | 2110 | 3.6873 | 0.0925 | |
|
| 3.6145 | 5.0 | 2637 | 3.6367 | 0.0980 | |
|
| 3.542 | 6.0 | 3165 | 3.5391 | 0.1161 | |
|
| 3.3305 | 7.0 | 3692 | 3.3986 | 0.1528 | |
|
| 3.171 | 8.0 | 4220 | 3.2162 | 0.2022 | |
|
| 2.9197 | 9.0 | 4747 | 3.0826 | 0.2344 | |
|
| 2.6468 | 10.0 | 5275 | 2.9709 | 0.2643 | |
|
| 2.4813 | 11.0 | 5802 | 2.9282 | 0.2880 | |
|
| 2.1928 | 12.0 | 6330 | 2.9192 | 0.2943 | |
|
| 1.9368 | 13.0 | 6857 | 2.9719 | 0.2974 | |
|
| 1.693 | 14.0 | 7385 | 3.0304 | 0.3021 | |
|
| 1.3964 | 15.0 | 7912 | 3.1033 | 0.3082 | |
|
| 1.3051 | 16.0 | 8440 | 3.2700 | 0.2945 | |
|
| 1.0794 | 17.0 | 8967 | 3.4284 | 0.3033 | |
|
| 0.9993 | 18.0 | 9495 | 3.5327 | 0.2998 | |
|
| 0.7641 | 19.0 | 10022 | 3.6907 | 0.2978 | |
|
| 0.68 | 20.0 | 10550 | 3.8579 | 0.2984 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|