Edit model card

giraffe176/Open_Maid_Samantha_Hermes_Orca

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the SLERP merge method.

Models Merged

The following models were included in the merge:

  • cognitivecomputations/samantha-1.1-westlake-7b
  • NeverSleep/Noromaid-7B-0.4-DPO
  • OpenHermes-2.5-Mistral-7B
  • Open-Orca/Mistral-7B-OpenOrca

Configuration

The following YAML configuration was used to produce this model:

models:
  - model: cognitivecomputations/samantha-1.1-westlake-7b
    layer_range: [0, 32]
  - model: NeverSleep/Noromaid-7B-0.4-DPO
    layer_range: [0, 32]
merge_method: slerp
base_model: NeverSleep/Noromaid-7B-0.4-DPO
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
name: workspace1
---
models:
  - model: teknium/OpenHermes-2.5-Mistral-7B
    layer_range: [0, 32]
  - model: Open-Orca/Mistral-7B-OpenOrca
    layer_range: [0, 32]
merge_method: slerp
base_model: teknium/OpenHermes-2.5-Mistral-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
name: workspace2
---
models:
  - model: workspace1
    layer_range: [0, 32]
  - model: workspace2
    layer_range: [0, 32]
merge_method: slerp
base_model: workspace1
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16





Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 68.81
AI2 Reasoning Challenge (25-Shot) 66.81
HellaSwag (10-Shot) 85.83
MMLU (5-Shot) 64.58
TruthfulQA (0-shot) 53.91
Winogrande (5-shot) 80.35
GSM8k (5-shot) 61.41
Downloads last month
77
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results