giliardgodoi's picture
Segunda tentativa
d0ac69c verified
metadata
library_name: transformers
license: cc-by-4.0
base_model: eduagarcia/RoBERTaLexPT-base
tags:
  - generated_from_trainer
datasets:
  - ulysses_ner_br
model-index:
  - name: robertalex-ptbr-ulyssesner
    results: []

robertalex-ptbr-ulyssesner

This model is a fine-tuned version of eduagarcia/RoBERTaLexPT-base on the ulysses_ner_br dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0711
  • Data: {'precision': 0.96, 'recall': 1.0, 'f1': 0.9795918367346939, 'number': 72}
  • Evento: {'precision': 0.6666666666666666, 'recall': 0.4, 'f1': 0.5, 'number': 5}
  • Fundamento: {'precision': 0.7967479674796748, 'recall': 0.9158878504672897, 'f1': 0.8521739130434782, 'number': 107}
  • Local: {'precision': 0.950354609929078, 'recall': 0.9241379310344827, 'f1': 0.9370629370629371, 'number': 145}
  • Organizacao: {'precision': 0.75, 'recall': 0.8888888888888888, 'f1': 0.8135593220338982, 'number': 81}
  • Pessoa: {'precision': 0.823076923076923, 'recall': 0.9385964912280702, 'f1': 0.8770491803278688, 'number': 114}
  • Produtodelei: {'precision': 0.6470588235294118, 'recall': 0.717391304347826, 'f1': 0.6804123711340206, 'number': 46}
  • Overall Precision: 0.8368
  • Overall Recall: 0.9088
  • Overall F1: 0.8713
  • Overall Accuracy: 0.9860

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Data Evento Fundamento Local Organizacao Pessoa Produtodelei Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4776 1.0 71 0.2170 {'precision': 1.0, 'recall': 0.4166666666666667, 'f1': 0.5882352941176471, 'number': 72} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 0.5714285714285714, 'recall': 0.5607476635514018, 'f1': 0.5660377358490566, 'number': 107} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 145} {'precision': 0.13445378151260504, 'recall': 0.5925925925925926, 'f1': 0.2191780821917808, 'number': 81} {'precision': 0.16793893129770993, 'recall': 0.19298245614035087, 'f1': 0.17959183673469387, 'number': 114} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 46} 0.2528 0.2807 0.2660 0.9344
0.124 2.0 142 0.0854 {'precision': 0.8666666666666667, 'recall': 0.9027777777777778, 'f1': 0.8843537414965987, 'number': 72} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 0.7165354330708661, 'recall': 0.8504672897196262, 'f1': 0.7777777777777777, 'number': 107} {'precision': 0.8187919463087249, 'recall': 0.8413793103448276, 'f1': 0.8299319727891157, 'number': 145} {'precision': 0.6078431372549019, 'recall': 0.7654320987654321, 'f1': 0.6775956284153005, 'number': 81} {'precision': 0.8303571428571429, 'recall': 0.8157894736842105, 'f1': 0.8230088495575222, 'number': 114} {'precision': 0.6590909090909091, 'recall': 0.6304347826086957, 'f1': 0.6444444444444444, 'number': 46} 0.7586 0.8105 0.7837 0.9783
0.0463 3.0 213 0.0699 {'precision': 0.9210526315789473, 'recall': 0.9722222222222222, 'f1': 0.9459459459459458, 'number': 72} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 0.7404580152671756, 'recall': 0.9065420560747663, 'f1': 0.8151260504201681, 'number': 107} {'precision': 0.9236111111111112, 'recall': 0.9172413793103448, 'f1': 0.9204152249134949, 'number': 145} {'precision': 0.7156862745098039, 'recall': 0.9012345679012346, 'f1': 0.7978142076502731, 'number': 81} {'precision': 0.8048780487804879, 'recall': 0.868421052631579, 'f1': 0.8354430379746836, 'number': 114} {'precision': 0.6304347826086957, 'recall': 0.6304347826086957, 'f1': 0.6304347826086957, 'number': 46} 0.8055 0.8789 0.8406 0.9838
0.0277 4.0 284 0.0709 {'precision': 0.9473684210526315, 'recall': 1.0, 'f1': 0.972972972972973, 'number': 72} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 0.8347826086956521, 'recall': 0.897196261682243, 'f1': 0.8648648648648648, 'number': 107} {'precision': 0.9246575342465754, 'recall': 0.9310344827586207, 'f1': 0.9278350515463917, 'number': 145} {'precision': 0.7553191489361702, 'recall': 0.8765432098765432, 'f1': 0.8114285714285715, 'number': 81} {'precision': 0.796875, 'recall': 0.8947368421052632, 'f1': 0.8429752066115702, 'number': 114} {'precision': 0.6481481481481481, 'recall': 0.7608695652173914, 'f1': 0.7000000000000001, 'number': 46} 0.8336 0.8965 0.8639 0.9833
0.0165 5.0 355 0.0640 {'precision': 0.9473684210526315, 'recall': 1.0, 'f1': 0.972972972972973, 'number': 72} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 0.8448275862068966, 'recall': 0.9158878504672897, 'f1': 0.8789237668161435, 'number': 107} {'precision': 0.9640287769784173, 'recall': 0.9241379310344827, 'f1': 0.943661971830986, 'number': 145} {'precision': 0.8111111111111111, 'recall': 0.9012345679012346, 'f1': 0.8538011695906432, 'number': 81} {'precision': 0.7969924812030075, 'recall': 0.9298245614035088, 'f1': 0.8582995951417005, 'number': 114} {'precision': 0.673469387755102, 'recall': 0.717391304347826, 'f1': 0.6947368421052631, 'number': 46} 0.8543 0.9053 0.8790 0.9848
0.0087 6.0 426 0.0612 {'precision': 0.9594594594594594, 'recall': 0.9861111111111112, 'f1': 0.9726027397260274, 'number': 72} {'precision': 0.5, 'recall': 0.2, 'f1': 0.28571428571428575, 'number': 5} {'precision': 0.8048780487804879, 'recall': 0.9252336448598131, 'f1': 0.8608695652173913, 'number': 107} {'precision': 0.9574468085106383, 'recall': 0.9310344827586207, 'f1': 0.9440559440559441, 'number': 145} {'precision': 0.8131868131868132, 'recall': 0.9135802469135802, 'f1': 0.8604651162790699, 'number': 81} {'precision': 0.8333333333333334, 'recall': 0.9210526315789473, 'f1': 0.875, 'number': 114} {'precision': 0.7083333333333334, 'recall': 0.7391304347826086, 'f1': 0.723404255319149, 'number': 46} 0.8579 0.9105 0.8834 0.9873
0.0057 7.0 497 0.0691 {'precision': 0.9473684210526315, 'recall': 1.0, 'f1': 0.972972972972973, 'number': 72} {'precision': 1.0, 'recall': 0.2, 'f1': 0.33333333333333337, 'number': 5} {'precision': 0.784, 'recall': 0.9158878504672897, 'f1': 0.8448275862068965, 'number': 107} {'precision': 0.9375, 'recall': 0.9310344827586207, 'f1': 0.9342560553633218, 'number': 145} {'precision': 0.8202247191011236, 'recall': 0.9012345679012346, 'f1': 0.8588235294117647, 'number': 81} {'precision': 0.8106060606060606, 'recall': 0.9385964912280702, 'f1': 0.8699186991869918, 'number': 114} {'precision': 0.5789473684210527, 'recall': 0.717391304347826, 'f1': 0.6407766990291262, 'number': 46} 0.8317 0.9105 0.8693 0.9866
0.0042 8.0 568 0.0701 {'precision': 0.96, 'recall': 1.0, 'f1': 0.9795918367346939, 'number': 72} {'precision': 0.3333333333333333, 'recall': 0.2, 'f1': 0.25, 'number': 5} {'precision': 0.8181818181818182, 'recall': 0.9252336448598131, 'f1': 0.868421052631579, 'number': 107} {'precision': 0.9640287769784173, 'recall': 0.9241379310344827, 'f1': 0.943661971830986, 'number': 145} {'precision': 0.7634408602150538, 'recall': 0.8765432098765432, 'f1': 0.8160919540229884, 'number': 81} {'precision': 0.828125, 'recall': 0.9298245614035088, 'f1': 0.8760330578512396, 'number': 114} {'precision': 0.6538461538461539, 'recall': 0.7391304347826086, 'f1': 0.693877551020408, 'number': 46} 0.8462 0.9070 0.8755 0.9863
0.0029 9.0 639 0.0713 {'precision': 0.96, 'recall': 1.0, 'f1': 0.9795918367346939, 'number': 72} {'precision': 0.6666666666666666, 'recall': 0.4, 'f1': 0.5, 'number': 5} {'precision': 0.8448275862068966, 'recall': 0.9158878504672897, 'f1': 0.8789237668161435, 'number': 107} {'precision': 0.9436619718309859, 'recall': 0.9241379310344827, 'f1': 0.9337979094076655, 'number': 145} {'precision': 0.7708333333333334, 'recall': 0.9135802469135802, 'f1': 0.8361581920903954, 'number': 81} {'precision': 0.8294573643410853, 'recall': 0.9385964912280702, 'f1': 0.8806584362139916, 'number': 114} {'precision': 0.6415094339622641, 'recall': 0.7391304347826086, 'f1': 0.6868686868686867, 'number': 46} 0.8485 0.9140 0.8801 0.9860
0.0025 10.0 710 0.0711 {'precision': 0.96, 'recall': 1.0, 'f1': 0.9795918367346939, 'number': 72} {'precision': 0.6666666666666666, 'recall': 0.4, 'f1': 0.5, 'number': 5} {'precision': 0.7967479674796748, 'recall': 0.9158878504672897, 'f1': 0.8521739130434782, 'number': 107} {'precision': 0.950354609929078, 'recall': 0.9241379310344827, 'f1': 0.9370629370629371, 'number': 145} {'precision': 0.75, 'recall': 0.8888888888888888, 'f1': 0.8135593220338982, 'number': 81} {'precision': 0.823076923076923, 'recall': 0.9385964912280702, 'f1': 0.8770491803278688, 'number': 114} {'precision': 0.6470588235294118, 'recall': 0.717391304347826, 'f1': 0.6804123711340206, 'number': 46} 0.8368 0.9088 0.8713 0.9860

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1