|
---
|
|
language: sk
|
|
tags:
|
|
- SlovakBERT
|
|
license: mit
|
|
datasets:
|
|
- wikipedia
|
|
- opensubtitles
|
|
- oscar
|
|
- gerulatawebcrawl
|
|
- gerulatamonitoring
|
|
- blbec.online
|
|
---
|
|
|
|
# SlovakBERT (base-sized model)
|
|
SlovakBERT pretrained model on Slovak language using a masked language modeling (MLM) objective. This model is case-sensitive: it makes a difference between slovensko and Slovensko.
|
|
|
|
## Intended uses & limitations
|
|
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
|
|
**IMPORTANT**: The model was not trained on the “ and ” (direct quote) character -> so before tokenizing the text, it is advised to replace all “ and ” (direct quote marks) with a single "(double quote marks).
|
|
|
|
### How to use
|
|
You can use this model directly with a pipeline for masked language modeling:
|
|
|
|
```python
|
|
from transformers import pipeline
|
|
unmasker = pipeline('fill-mask', model='gerulata/slovakbert')
|
|
unmasker("Deti sa <mask> na ihrisku.")
|
|
|
|
[{'sequence': 'Deti sa hrali na ihrisku.',
|
|
'score': 0.6355380415916443,
|
|
'token': 5949,
|
|
'token_str': ' hrali'},
|
|
{'sequence': 'Deti sa hrajú na ihrisku.',
|
|
'score': 0.14731724560260773,
|
|
'token': 9081,
|
|
'token_str': ' hrajú'},
|
|
{'sequence': 'Deti sa zahrali na ihrisku.',
|
|
'score': 0.05016357824206352,
|
|
'token': 32553,
|
|
'token_str': ' zahrali'},
|
|
{'sequence': 'Deti sa stretli na ihrisku.',
|
|
'score': 0.041727423667907715,
|
|
'token': 5964,
|
|
'token_str': ' stretli'},
|
|
{'sequence': 'Deti sa učia na ihrisku.',
|
|
'score': 0.01886524073779583,
|
|
'token': 18099,
|
|
'token_str': ' učia'}]
|
|
```
|
|
|
|
Here is how to use this model to get the features of a given text in PyTorch:
|
|
```python
|
|
from transformers import RobertaTokenizer, RobertaModel
|
|
tokenizer = RobertaTokenizer.from_pretrained('gerulata/slovakbert')
|
|
model = RobertaModel.from_pretrained('gerulata/slovakbert')
|
|
text = "Text ktorý sa má embedovať."
|
|
encoded_input = tokenizer(text, return_tensors='pt')
|
|
output = model(**encoded_input)
|
|
```
|
|
and in TensorFlow:
|
|
```python
|
|
from transformers import RobertaTokenizer, TFRobertaModel
|
|
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
|
model = TFRobertaModel.from_pretrained('roberta-base')
|
|
text = "Text ktorý sa má embedovať."
|
|
encoded_input = tokenizer(text, return_tensors='tf')
|
|
output = model(encoded_input)
|
|
```
|
|
Or extract information from the model like this:
|
|
```python
|
|
from transformers import pipeline
|
|
unmasker = pipeline('fill-mask', model='gerulata/slovakbert')
|
|
unmasker("Slovenské národne povstanie sa uskutočnilo v roku <mask>.")
|
|
|
|
[{'sequence': 'Slovenske narodne povstanie sa uskutočnilo v roku 1944.',
|
|
'score': 0.7383289933204651,
|
|
'token': 16621,
|
|
'token_str': ' 1944'},...]
|
|
```
|
|
|
|
# Training data
|
|
The SlovakBERT model was pretrained on these datasets:
|
|
|
|
- Wikipedia (326MB of text),
|
|
- OpenSubtitles (415MB of text),
|
|
- Oscar (4.6GB of text),
|
|
- Gerulata WebCrawl (12.7GB of text) ,
|
|
- Gerulata Monitoring (214 MB of text),
|
|
- blbec.online (4.5GB of text)
|
|
|
|
The text was then processed with the following steps:
|
|
- URL and email addresses were replaced with special tokens ("url", "email").
|
|
- Elongated interpunction was reduced (e.g. -- to -).
|
|
- Markdown syntax was deleted.
|
|
- All text content in braces f.g was eliminated to reduce the amount of markup and programming language text.
|
|
|
|
We segmented the resulting corpus into sentences and removed duplicates to get 181.6M unique sentences. In total, the final corpus has 19.35GB of text.
|
|
|
|
# Pretraining
|
|
The model was trained in **fairseq** on 4 x Nvidia A100 GPUs for 300K steps with a batch size of 512 and a sequence length of 512. The optimizer used is Adam with a learning rate of 5e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and \\(\epsilon = 1e-6\\), a weight decay of 0.01, dropout rate 0.1, learning rate warmup for 10k steps and linear decay of the learning rate after. We used 16-bit float precision.
|
|
|
|
## About us
|
|
<a href="https://www.gerulata.com/">
|
|
<img width="300px" src="https://www.gerulata.com/images/gerulata-logo-blue.png">
|
|
</a>
|
|
|
|
Gerulata uses near real-time monitoring, advanced analytics and machine learning to help create a safer, more productive and enjoyable online environment for everyone.
|
|
|
|
### BibTeX entry and citation info
|
|
- to be completed |