SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-large-en-v1.5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-large-en-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("model_3")
# Run inference
sentences = [
"What was Nathan's response to the initial proposal from Global Air U?",
"I don't see on the proposal.\nI don't see anything class or the class related.\nUm.\nOh, so for the course.\nNo, no.",
'And hopefully that should update now in your account in a second.\nYeah.\nIf you give that a go now, you should see all the way to August 2025.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3279 |
cosine_accuracy@3 | 0.4898 |
cosine_accuracy@5 | 0.5663 |
cosine_accuracy@10 | 0.6613 |
cosine_accuracy@30 | 0.767 |
cosine_accuracy@50 | 0.8155 |
cosine_accuracy@100 | 0.8598 |
cosine_precision@1 | 0.3279 |
cosine_precision@3 | 0.1902 |
cosine_precision@5 | 0.1383 |
cosine_precision@10 | 0.0872 |
cosine_precision@30 | 0.0384 |
cosine_precision@50 | 0.0257 |
cosine_precision@100 | 0.0143 |
cosine_recall@1 | 0.1988 |
cosine_recall@3 | 0.3261 |
cosine_recall@5 | 0.391 |
cosine_recall@10 | 0.4756 |
cosine_recall@30 | 0.6031 |
cosine_recall@50 | 0.6602 |
cosine_recall@100 | 0.7195 |
cosine_ndcg@10 | 0.3785 |
cosine_mrr@10 | 0.4295 |
cosine_map@100 | 0.3193 |
dot_accuracy@1 | 0.329 |
dot_accuracy@3 | 0.4887 |
dot_accuracy@5 | 0.5717 |
dot_accuracy@10 | 0.6634 |
dot_accuracy@30 | 0.767 |
dot_accuracy@50 | 0.8134 |
dot_accuracy@100 | 0.8619 |
dot_precision@1 | 0.329 |
dot_precision@3 | 0.1899 |
dot_precision@5 | 0.1387 |
dot_precision@10 | 0.0874 |
dot_precision@30 | 0.0385 |
dot_precision@50 | 0.0257 |
dot_precision@100 | 0.0143 |
dot_recall@1 | 0.1994 |
dot_recall@3 | 0.3259 |
dot_recall@5 | 0.3937 |
dot_recall@10 | 0.4771 |
dot_recall@30 | 0.6044 |
dot_recall@50 | 0.6591 |
dot_recall@100 | 0.722 |
dot_ndcg@10 | 0.3791 |
dot_mrr@10 | 0.4305 |
dot_map@100 | 0.3195 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 7,005 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 8 tokens
- mean: 14.59 tokens
- max: 25 tokens
- min: 12 tokens
- mean: 60.98 tokens
- max: 170 tokens
- Samples:
anchor positive What progress has been made with setting up Snowflake share?
He finally got around to giving me the information necessary to set up Snowflake share.
I will be submitting the application to get back set up.
Once the database is set up, then we just need to figure out how to configure Snowflake share, which it's going to be in the documentation.
We should be set on that end.
We also are going to have a conversation with someone named Peter Tsanghen, who's, who owns Jira platform.
Great.Who is Peter Tsanghen and what is the planned interaction with him?
He finally got around to giving me the information necessary to set up Snowflake share.
I will be submitting the application to get back set up.
Once the database is set up, then we just need to figure out how to configure Snowflake share, which it's going to be in the documentation.
We should be set on that end.
We also are going to have a conversation with someone named Peter Tsanghen, who's, who owns Jira platform.
Great.Who is Peter Tsanghen and what is the planned interaction with him?
Uh, and so now we just have to meet with Peter.
Peter is someone who I used to work with on, he used to work on, uh, syndicated data products.
So I used to work with him on that. - Loss:
main.MultipleNegativesRankingLoss_with_logging
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 4per_device_eval_batch_size
: 4num_train_epochs
: 2max_steps
: 1751disable_tqdm
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 2max_steps
: 1751lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Trueremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falsefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_map@100 |
---|---|---|
0.0114 | 20 | 0.2538 |
0.0228 | 40 | 0.2601 |
0.0342 | 60 | 0.2724 |
0.0457 | 80 | 0.2911 |
0.0571 | 100 | 0.2976 |
0.0685 | 120 | 0.3075 |
0.0799 | 140 | 0.3071 |
0.0913 | 160 | 0.3111 |
0.1027 | 180 | 0.3193 |
Framework Versions
- Python: 3.10.9
- Sentence Transformers: 3.0.1
- Transformers: 4.39.3
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ganeshanmalhotra007/model_3
Base model
Alibaba-NLP/gte-large-en-v1.5Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.328
- Cosine Accuracy@3 on Unknownself-reported0.490
- Cosine Accuracy@5 on Unknownself-reported0.566
- Cosine Accuracy@10 on Unknownself-reported0.661
- Cosine Accuracy@30 on Unknownself-reported0.767
- Cosine Accuracy@50 on Unknownself-reported0.816
- Cosine Accuracy@100 on Unknownself-reported0.860
- Cosine Precision@1 on Unknownself-reported0.328
- Cosine Precision@3 on Unknownself-reported0.190
- Cosine Precision@5 on Unknownself-reported0.138