Edit model card

whisper-large-v3-pt-3000h-4

This model is a fine-tuned version of openai/whisper-large-v3 on the fsicoli/common_voice_18_0 pt dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1938
  • Wer: 0.1081

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0849 1.0 5529 0.1938 0.1081
0.0788 2.0 11058 0.2289 0.1061
0.0183 3.0 16587 0.2809 0.1079
0.0322 4.0 22116 0.3088 0.1058
0.0273 5.0 27645 0.3222 0.1038
0.0204 6.0 33174 0.3532 0.1066
0.0605 7.0 38703 0.3542 0.1053
0.043 8.0 44232 0.3669 0.1049
0.0204 9.0 49761 0.3707 0.1036
0.0159 10.0 55290 0.3697 0.1031

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu124
  • Datasets 2.18.1.dev0
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fsicoli/whisper-large-v3-pt-3000h-4

Finetuned
(294)
this model

Dataset used to train fsicoli/whisper-large-v3-pt-3000h-4

Evaluation results