metadata
license: llama3
library_name: transformers
tags: []
base_model:
- nbeerbower/llama3-KawaiiMahouSauce-8B
datasets:
- flammenai/Grill-preprod-v1_chatML
- flammenai/Grill-preprod-v2_chatML
model-index:
- name: Mahou-1.2-llama3-8B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.8
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=flammenai/Mahou-1.2-llama3-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.65
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=flammenai/Mahou-1.2-llama3-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.43
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=flammenai/Mahou-1.2-llama3-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 60.5
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=flammenai/Mahou-1.2-llama3-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.82
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=flammenai/Mahou-1.2-llama3-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.95
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=flammenai/Mahou-1.2-llama3-8B
name: Open LLM Leaderboard
Mahou-1.2-llama3-8B
Mahou is our attempt to build a production-ready conversational/roleplay LLM.
Future versions will be released iteratively and finetuned from flammen.ai conversational data.
Chat Format
This model has been trained to use ChatML format.
<|im_start|>system
{{system}}<|im_end|>
<|im_start|>{{char}}
{{message}}<|im_end|>
<|im_start|>{{user}}
{{message}}<|im_end|>
ST Settings
- Use ChatML for the Context Template.
- Turn on Instruct Mode for ChatML.
- Use the following stopping strings:
["<", "|", "<|", "\n"]
License
This model is based on Meta Llama-3-8B and is governed by the META LLAMA 3 COMMUNITY LICENSE AGREEMENT.
Method
Finetuned using an A100 on Google Colab.
Fine-tune a Mistral-7b model with Direct Preference Optimization - Maxime Labonne
Configuration
LoRA, model, and training settings:
# LoRA configuration
peft_config = LoraConfig(
r=16,
lora_alpha=16,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)
# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
model.config.use_cache = False
# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
# Training arguments
training_args = TrainingArguments(
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
gradient_checkpointing=True,
learning_rate=5e-5,
lr_scheduler_type="cosine",
max_steps=1000,
save_strategy="no",
logging_steps=1,
output_dir=new_model,
optim="paged_adamw_32bit",
warmup_steps=100,
bf16=True,
report_to="wandb",
)
# Create DPO trainer
dpo_trainer = DPOTrainer(
model,
ref_model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
peft_config=peft_config,
beta=0.1,
force_use_ref_model=True
)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.19 |
AI2 Reasoning Challenge (25-Shot) | 69.80 |
HellaSwag (10-Shot) | 84.65 |
MMLU (5-Shot) | 68.43 |
TruthfulQA (0-shot) | 60.50 |
Winogrande (5-shot) | 77.82 |
GSM8k (5-shot) | 71.95 |