llama-8b-dpo-full / README.md
fenguhao's picture
End of training
ca44aef verified
metadata
base_model: princeton-nlp/Llama-3-Base-8B-SFT
tags:
  - alignment-handbook
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: llama-8b-dpo-full
    results: []

llama-8b-dpo-full

This model is a fine-tuned version of princeton-nlp/Llama-3-Base-8B-SFT on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6316
  • Rewards/chosen: 0.6899
  • Rewards/rejected: 0.3044
  • Rewards/accuracies: 0.6600
  • Rewards/margins: 0.3855
  • Logps/rejected: -2200.0752
  • Logps/chosen: -2603.7832
  • Logits/rejected: -1.4288
  • Logits/chosen: -1.4752

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6558 0.05 100 0.6527 0.7712 0.5799 0.5740 0.1913 -2172.5291 -2595.6543 -1.1822 -1.2241
0.6404 0.1 200 0.6911 0.4590 0.2677 0.5860 0.1913 -2203.7483 -2626.8760 -1.2019 -1.2423
0.6725 0.16 300 0.6603 0.8108 0.5231 0.6320 0.2877 -2178.2058 -2591.6921 -1.3149 -1.3646
0.689 0.21 400 0.6529 0.8101 0.4993 0.6280 0.3108 -2180.5830 -2591.7649 -1.4428 -1.5029
0.6682 0.26 500 0.6674 0.9667 0.6125 0.6420 0.3542 -2169.2654 -2576.1008 -1.5148 -1.5665
0.6309 0.31 600 0.6445 0.8348 0.4673 0.6580 0.3675 -2183.7852 -2589.2971 -1.5885 -1.6449
0.6467 0.37 700 0.6482 0.8852 0.5455 0.6240 0.3397 -2175.9651 -2584.2512 -1.6562 -1.7105
0.6215 0.42 800 0.6453 1.0902 0.6825 0.6380 0.4077 -2162.2678 -2563.7546 -1.6541 -1.7085
0.6674 0.47 900 0.6416 0.7802 0.4490 0.6440 0.3312 -2185.6135 -2594.7568 -1.5145 -1.5652
0.644 0.52 1000 0.6500 0.7077 0.3679 0.6400 0.3398 -2193.7285 -2602.0039 -1.4506 -1.5047
0.6539 0.58 1100 0.6389 0.8477 0.4852 0.6500 0.3625 -2181.9937 -2588.0068 -1.4697 -1.5227
0.7267 0.63 1200 0.6421 0.5390 0.2257 0.6620 0.3133 -2207.9438 -2618.8738 -1.6292 -1.6800
0.5746 0.68 1300 0.6301 0.9057 0.4892 0.6660 0.4164 -2181.5920 -2582.2095 -1.4994 -1.5461
0.6053 0.73 1400 0.6342 0.8758 0.4563 0.6660 0.4196 -2184.8909 -2585.1914 -1.4440 -1.4891
0.6232 0.79 1500 0.6324 0.8055 0.3994 0.6580 0.4062 -2190.5796 -2592.2219 -1.4283 -1.4759
0.6326 0.84 1600 0.6392 0.4525 0.1032 0.6560 0.3493 -2220.1997 -2627.5283 -1.4501 -1.4959
0.6469 0.89 1700 0.6306 0.7453 0.3498 0.6660 0.3955 -2195.5359 -2598.2412 -1.4289 -1.4758
0.669 0.94 1800 0.6323 0.6544 0.2748 0.6600 0.3796 -2203.0393 -2607.3367 -1.4308 -1.4769
0.6531 0.99 1900 0.6317 0.6900 0.3040 0.6640 0.3860 -2200.1182 -2603.7776 -1.4289 -1.4754

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2
  • Datasets 2.14.6
  • Tokenizers 0.15.2