ner_fine_tuned / README.md
farizkuy's picture
Training complete
349231c verified
|
raw
history blame
2.84 kB
metadata
license: mit
base_model: cahya/bert-base-indonesian-NER
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ner_fine_tuned
    results: []

ner_fine_tuned

This model is a fine-tuned version of cahya/bert-base-indonesian-NER on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0080
  • Precision: 0.6970
  • Recall: 0.5349
  • F1: 0.6053
  • Accuracy: 0.8900

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 8 0.5649 0.625 0.4651 0.5333 0.8832
No log 2.0 16 0.6457 0.7857 0.5116 0.6197 0.9003
No log 3.0 24 0.7181 0.6471 0.5116 0.5714 0.8832
No log 4.0 32 0.8134 0.6970 0.5349 0.6053 0.8900
No log 5.0 40 0.8528 0.6667 0.5116 0.5789 0.8866
No log 6.0 48 0.8893 0.6667 0.5116 0.5789 0.8866
No log 7.0 56 0.9148 0.6667 0.5116 0.5789 0.8866
No log 8.0 64 0.9440 0.6667 0.5116 0.5789 0.8866
No log 9.0 72 0.9744 0.6970 0.5349 0.6053 0.8900
No log 10.0 80 0.9895 0.6765 0.5349 0.5974 0.8900
No log 11.0 88 0.9968 0.6970 0.5349 0.6053 0.8900
No log 12.0 96 1.0015 0.6970 0.5349 0.6053 0.8900
No log 13.0 104 1.0049 0.6970 0.5349 0.6053 0.8900
No log 14.0 112 1.0072 0.6970 0.5349 0.6053 0.8900
No log 15.0 120 1.0080 0.6970 0.5349 0.6053 0.8900

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1