k2e_asr-scr_w2v2-base_002
This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5624
- Per: 0.1656
- Pcc: 0.5701
- Ctc Loss: 0.5415
- Mse Loss: 0.9981
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 1
- seed: 2222
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2235
- training_steps: 22350
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Per | Pcc | Ctc Loss | Mse Loss |
---|---|---|---|---|---|---|---|
45.3867 | 1.0 | 745 | 21.3997 | 0.9890 | 0.1720 | 5.7842 | 15.6506 |
10.6834 | 2.0 | 1490 | 4.9038 | 0.9890 | 0.4667 | 3.8839 | 1.0451 |
4.7613 | 3.0 | 2235 | 4.5932 | 0.9890 | 0.5577 | 3.8113 | 0.8478 |
4.5315 | 4.01 | 2980 | 4.4401 | 0.9890 | 0.6034 | 3.7726 | 0.7725 |
4.3577 | 5.01 | 3725 | 4.3030 | 0.9890 | 0.6066 | 3.7177 | 0.7229 |
4.1373 | 6.01 | 4470 | 4.2293 | 0.9890 | 0.6031 | 3.6366 | 0.7552 |
3.9539 | 7.01 | 5215 | 4.3927 | 0.9890 | 0.5807 | 3.6053 | 0.9706 |
3.7741 | 8.01 | 5960 | 4.1465 | 0.9886 | 0.5877 | 3.4982 | 0.8521 |
3.4397 | 9.01 | 6705 | 3.7672 | 0.9637 | 0.5536 | 2.9927 | 0.9519 |
2.8431 | 10.01 | 7450 | 3.0932 | 0.7901 | 0.5626 | 2.2607 | 0.9546 |
2.1711 | 11.01 | 8195 | 2.5671 | 0.5128 | 0.5584 | 1.6191 | 1.0089 |
1.6661 | 12.02 | 8940 | 2.1670 | 0.3754 | 0.5618 | 1.2111 | 0.9792 |
1.3242 | 13.02 | 9685 | 2.1092 | 0.2805 | 0.5532 | 0.9672 | 1.1267 |
1.1125 | 14.02 | 10430 | 1.9269 | 0.2294 | 0.5589 | 0.8275 | 1.0737 |
0.9919 | 15.02 | 11175 | 1.8918 | 0.2097 | 0.5555 | 0.7500 | 1.1043 |
0.8889 | 16.02 | 11920 | 1.8554 | 0.1982 | 0.5646 | 0.6987 | 1.1131 |
0.8228 | 17.02 | 12665 | 1.7697 | 0.1940 | 0.5610 | 0.6591 | 1.0697 |
0.7558 | 18.02 | 13410 | 1.6513 | 0.1864 | 0.5718 | 0.6363 | 0.9853 |
0.7122 | 19.03 | 14155 | 1.7786 | 0.1836 | 0.5614 | 0.6145 | 1.1156 |
0.6696 | 20.03 | 14900 | 1.6690 | 0.1796 | 0.5638 | 0.5980 | 1.0350 |
0.6352 | 21.03 | 15645 | 1.6720 | 0.1770 | 0.5670 | 0.5816 | 1.0522 |
0.6045 | 22.03 | 16390 | 1.6025 | 0.1739 | 0.5746 | 0.5745 | 0.9995 |
0.5786 | 23.03 | 17135 | 1.5682 | 0.1718 | 0.5675 | 0.5662 | 0.9784 |
0.5503 | 24.03 | 17880 | 1.5467 | 0.1707 | 0.5626 | 0.5568 | 0.9688 |
0.53 | 25.03 | 18625 | 1.5534 | 0.1684 | 0.5729 | 0.5535 | 0.9784 |
0.5161 | 26.03 | 19370 | 1.5191 | 0.1672 | 0.5679 | 0.5489 | 0.9540 |
0.4972 | 27.04 | 20115 | 1.5131 | 0.1668 | 0.5698 | 0.5468 | 0.9514 |
0.492 | 28.04 | 20860 | 1.5420 | 0.1664 | 0.5683 | 0.5422 | 0.9800 |
0.4795 | 29.04 | 21605 | 1.5279 | 0.1659 | 0.5703 | 0.5415 | 0.9690 |
0.4731 | 30.04 | 22350 | 1.5624 | 0.1656 | 0.5701 | 0.5415 | 0.9981 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.2
- Downloads last month
- 0
Model tree for excalibur12/k2e_asr-scr_w2v2-base_002
Base model
facebook/wav2vec2-base