k2e_asr-scr_w2v2-base_001
This model is a fine-tuned version of facebook/wav2vec2-base on the NIA037-SPK-K2E dataset. It achieves the following results on the evaluation set:
- Loss: 0.9496
- Per: 0.1270
- Pcc: 0.6327
- Ctc Loss: 0.4556
- Mse Loss: 0.8398
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 1
- seed: 1111
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 750
- training_steps: 7500
Training results
Training Loss | Epoch | Step | Validation Loss | Per | Pcc | Ctc Loss | Mse Loss |
---|---|---|---|---|---|---|---|
14.7174 | 1.01 | 750 | 4.3658 | 0.9890 | 0.5177 | 3.6902 | 0.8665 |
3.5164 | 2.02 | 1500 | 2.1438 | 0.2816 | 0.6063 | 0.9487 | 1.1834 |
1.584 | 3.02 | 2250 | 1.5678 | 0.2137 | 0.6339 | 0.6352 | 0.8937 |
1.1562 | 4.03 | 3000 | 1.3284 | 0.1948 | 0.6381 | 0.5744 | 0.7624 |
0.782 | 5.04 | 3750 | 1.3196 | 0.1887 | 0.6422 | 0.5456 | 0.8195 |
0.4137 | 6.05 | 4500 | 1.1475 | 0.1829 | 0.6424 | 0.5305 | 0.7624 |
0.0368 | 7.06 | 5250 | 1.1738 | 0.1526 | 0.6406 | 0.4688 | 0.8706 |
-0.2826 | 8.06 | 6000 | 1.0095 | 0.1503 | 0.6327 | 0.4614 | 0.8256 |
-0.529 | 9.07 | 6750 | 0.8920 | 0.1475 | 0.6327 | 0.4590 | 0.7955 |
-0.6727 | 10.08 | 7500 | 0.9496 | 0.1467 | 0.6362 | 0.4556 | 0.8398 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.2
- Downloads last month
- 0
Model tree for excalibur12/k2e_asr-scr_w2v2-base_001
Base model
facebook/wav2vec2-base