|
from typing import Optional, Union, List, Tuple, Callable |
|
|
|
import torch |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
|
|
class KarrasEDMPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for unconditional or class-conditional image generation based on the EDM model from [1]. |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." |
|
https://arxiv.org/abs/2206.00364 |
|
Args: |
|
unet ([`UNet2DModel`]): |
|
A `UNet2DModel` to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Currently only |
|
supports KarrasEDMScheduler. |
|
""" |
|
|
|
model_cpu_offload_seq = "unet" |
|
|
|
def __init__(self, unet, scheduler) -> None: |
|
super().__init__() |
|
|
|
self.register_modules( |
|
unet=unet, |
|
scheduler=scheduler, |
|
) |
|
|
|
self.safety_checker = None |
|
|
|
def prepare_latents(self, batch_size, num_channels, height, width, dtype, device, generator, latents=None): |
|
shape = (batch_size, num_channels, height, width) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device=device, dtype=dtype) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
|
|
def postprocess_image(self, sample: torch.FloatTensor, output_type: str = "pil"): |
|
if output_type not in ["pt", "np", "pil"]: |
|
raise ValueError( |
|
f"output_type={output_type} is not supported. Make sure to choose one of ['pt', 'np', or 'pil']" |
|
) |
|
|
|
|
|
sample = (sample / 2 + 0.5).clamp(0, 1) |
|
if output_type == "pt": |
|
return sample |
|
|
|
|
|
sample = sample.cpu().permute(0, 2, 3, 1).numpy() |
|
if output_type == "np": |
|
return sample |
|
|
|
|
|
sample = self.numpy_to_pil(sample) |
|
return sample |
|
|
|
def check_inputs(self, num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps): |
|
if num_inference_steps is None and timesteps is None: |
|
raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.") |
|
|
|
if num_inference_steps is not None and timesteps is not None: |
|
logger.warning( |
|
f"Both `num_inference_steps`: {num_inference_steps} and `timesteps`: {timesteps} are supplied;" |
|
" `timesteps` will be used over `num_inference_steps`." |
|
) |
|
|
|
if latents is not None: |
|
expected_shape = (batch_size, 3, img_size, img_size) |
|
if latents.shape != expected_shape: |
|
raise ValueError(f"The shape of latents is {latents.shape} but is expected to be {expected_shape}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
batch_size: int = 1, |
|
num_inference_steps: int = 1, |
|
timesteps: List[int] = None, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
): |
|
r""" |
|
Args: |
|
batch_size (`int`, *optional*, defaults to 1): |
|
The number of images to generate. |
|
class_labels (`torch.Tensor` or `List[int]` or `int`, *optional*): |
|
Optional class labels for conditioning class-conditional consistency models. Not used if the model is |
|
not class-conditional. |
|
num_inference_steps (`int`, *optional*, defaults to 1): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` |
|
timesteps are used. Must be in descending order. |
|
generator (`torch.Generator`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
Examples: |
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is |
|
returned where the first element is a list with the generated images. |
|
""" |
|
|
|
img_size = self.unet.config.sample_size |
|
device = self._execution_device |
|
|
|
|
|
|
|
|
|
|
|
sample = self.prepare_latents( |
|
batch_size=batch_size, |
|
num_channels=self.unet.config.in_channels, |
|
height=img_size, |
|
width=img_size, |
|
dtype=self.unet.dtype, |
|
device=device, |
|
generator=generator, |
|
latents=latents, |
|
) |
|
|
|
|
|
if timesteps is not None: |
|
self.scheduler.set_timesteps(timesteps=timesteps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
self.scheduler.set_timesteps(num_inference_steps) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
scaled_sample = self.scheduler.scale_model_input(sample, t) |
|
|
|
if self.scheduler.step_index is None: |
|
self.scheduler._init_step_index(t) |
|
|
|
sigma = self.scheduler.sigmas[self.scheduler.step_index] |
|
|
|
sigma_input = self.scheduler.precondition_noise(sigma) |
|
|
|
|
|
model_output = self.unet(scaled_sample, sigma_input.squeeze(), return_dict=False)[0] |
|
|
|
|
|
|
|
sample = self.scheduler.step(model_output, t, sample).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
|
|
image = self.postprocess_image(sample, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |