giulio98 commited on
Commit
b6b031f
1 Parent(s): 4c1b6ff

Update pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +1 -11
pipeline.py CHANGED
@@ -172,18 +172,8 @@ class KarrasEDMPipeline(DiffusionPipeline):
172
  # 5. Denoising loop
173
  # Implements the "EDM" column in Table 1 of the EDM paper
174
  num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
175
- # BEGIN CHANGE
176
- t_init = timesteps[0]
177
- scaled_sample_first_step = self.scheduler.scale_model_input(sample / self.scheduler.init_noise_sigma, t_init)
178
- if self.scheduler.step_index is None:
179
- self.scheduler._init_step_index(t_init)
180
- sigma = self.scheduler.sigmas[self.scheduler.step_index]
181
- sigma_input = self.scheduler.precondition_noise(sigma)
182
- model_output = self.unet(scaled_sample_first_step, sigma_input.squeeze(), return_dict=False)[0]
183
- sample = self.scheduler.step(model_output, t_init, sample).prev_sample
184
- # END CHANGE
185
  with self.progress_bar(total=num_inference_steps) as progress_bar:
186
- for i, t in enumerate(timesteps[1:]): # changed by giulio
187
  # 1. Add noise (if necessary) and precondition the input sample.
188
  scaled_sample = self.scheduler.scale_model_input(sample, t)
189
 
 
172
  # 5. Denoising loop
173
  # Implements the "EDM" column in Table 1 of the EDM paper
174
  num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
 
 
 
 
 
 
 
 
 
 
175
  with self.progress_bar(total=num_inference_steps) as progress_bar:
176
+ for i, t in enumerate(timesteps):
177
  # 1. Add noise (if necessary) and precondition the input sample.
178
  scaled_sample = self.scheduler.scale_model_input(sample, t)
179