language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- pszemraj/govreport-summarization-8192
metrics:
- rouge
pipeline_tag: summarization
base_model: allenai/led-base-16384
model-index:
- name: led-base-16384-finetuned-govreport
results:
- task:
type: summarization
name: Summarization
dataset:
name: pszemraj/govreport-summarization-8192
type: pszemraj/govreport-summarization-8192
config: split
split: validation
args: split
metrics:
- type: rouge
value: 50.3574
name: ROUGE-1
- type: rouge
value: 20.0448
name: ROUGE-2
- type: rouge
value: 22.2156
name: ROUGE-L
- type: rouge
value: 22.2156
name: ROUGE-LSUM
- task:
type: summarization
name: Summarization
dataset:
name: pszemraj/govreport-summarization-8192
type: pszemraj/govreport-summarization-8192
config: split
split: test
args: split
metrics:
- type: rouge
value: 52.6378
name: ROUGE-1
- type: rouge
value: 22.213
name: ROUGE-2
- type: rouge
value: 23.5898
name: ROUGE-L
- type: rouge
value: 23.5898
name: ROUGE-LSUM
led-base-16384-finetuned-govreport
This model is a fine-tuned version of allenai/led-base-16384 on the pszemraj/govreport-summarization-8192 dataset. It achieves the following results on the evaluation set:
- Loss: 1.2887
The rouge metrics calculations were processed later down the line (final notebook can be found HERE).
It achieved the following results on the validation set:
- Rouge1: 50.3574
- Rouge2: 20.0448
- Rougel: 22.2156
- Rougelsum: 22.2156
It achieved the following results on the test set:
- Rouge1: 52.6378
- Rouge2: 22.2130
- Rougel: 23.5898
- Rougelsum: 23.5898
Model description
As described in Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan, Allenai's Longformer Encoder-Decoder (LED) was initialized from bart-base since both models share the exact same architecture. To be able to process 16K tokens, bart-base's position embedding matrix was simply copied 16 times.
This model is especially interesting for long-range summarization and question answering.
Intended uses & limitations
pszemraj/govreport-summarization-8192 is a pre-processed version of the dataset ccdv/govreport-summarization, which is a dataset for summarization of long documents adapted from this repository and this paper.
The Allenai's LED model was fine-tuned to this dataset, allowing the summarization of documents up to 16384 tokens.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1492 | 0.24 | 250 | 1.4233 |
1.0077 | 0.49 | 500 | 1.3813 |
1.0069 | 0.73 | 750 | 1.3499 |
0.9639 | 0.98 | 1000 | 1.3216 |
0.7996 | 1.22 | 1250 | 1.3172 |
0.9395 | 1.46 | 1500 | 1.3003 |
0.913 | 1.71 | 1750 | 1.2919 |
0.8843 | 1.95 | 2000 | 1.2887 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3