Edit model card

vit-brain-tumour-v2

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the essam24/brain-tumour-v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5359
  • Accuracy: 0.8704

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1236 0.5128 100 0.5990 0.8481
0.1695 1.0256 200 0.5359 0.8704
0.0186 1.5385 300 0.5705 0.8975
0.0368 2.0513 400 0.6136 0.8975
0.0036 2.5641 500 0.6122 0.9012
0.0029 3.0769 600 0.6067 0.9025
0.0027 3.5897 700 0.6449 0.9025

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for essam24/vit-brain-tumour-v2

Finetuned
(1683)
this model

Space using essam24/vit-brain-tumour-v2 1

Evaluation results