|
CifNetForImageClassification( |
|
(resnet): CifNetModel( |
|
(embedder): CifNetEmbeddings( |
|
(embedder): CifNetConvLayer( |
|
(convolution): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) |
|
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
(pooler): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) |
|
) |
|
(encoder): CifNetEncoder( |
|
(stages): ModuleList( |
|
(0): CifNetStage( |
|
(layers): Sequential( |
|
(0): CifNetBasicLayer( |
|
(shortcut): Identity() |
|
(layer): Sequential( |
|
(0): CifNetConvLayer( |
|
(convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
(1): CifNetConvLayer( |
|
(convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(1): CifNetStage( |
|
(layers): Sequential( |
|
(0): CifNetBasicLayer( |
|
(shortcut): CifNetShortCut( |
|
(convolution): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False) |
|
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
) |
|
(layer): Sequential( |
|
(0): CifNetConvLayer( |
|
(convolution): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
(1): CifNetConvLayer( |
|
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(2): CifNetStage( |
|
(layers): Sequential( |
|
(0): CifNetBasicLayer( |
|
(shortcut): CifNetShortCut( |
|
(convolution): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False) |
|
(normalization): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
) |
|
(layer): Sequential( |
|
(0): CifNetConvLayer( |
|
(convolution): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
(1): CifNetConvLayer( |
|
(convolution): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(3): CifNetStage( |
|
(layers): Sequential( |
|
(0): CifNetBasicLayer( |
|
(shortcut): CifNetShortCut( |
|
(convolution): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) |
|
(normalization): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
) |
|
(layer): Sequential( |
|
(0): CifNetConvLayer( |
|
(convolution): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
(1): CifNetConvLayer( |
|
(convolution): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): AdaptiveAvgPool2d(output_size=(1, 1)) |
|
) |
|
(classifier): Sequential( |
|
(0): Flatten(start_dim=1, end_dim=-1) |
|
(1): Linear(in_features=512, out_features=10, bias=True) |
|
) |
|
) |
|
---------------------------------------------------------------- |
|
Layer (type) Output Shape Param # |
|
================================================================ |
|
Conv2d-1 [4, 64, 112, 112] 9,408 |
|
BatchNorm2d-2 [4, 64, 112, 112] 128 |
|
SiLU-3 [4, 64, 112, 112] 0 |
|
CifNetConvLayer-4 [4, 64, 112, 112] 0 |
|
MaxPool2d-5 [4, 64, 56, 56] 0 |
|
CifNetEmbeddings-6 [4, 64, 56, 56] 0 |
|
Conv2d-7 [4, 64, 56, 56] 36,864 |
|
BatchNorm2d-8 [4, 64, 56, 56] 128 |
|
SiLU-9 [4, 64, 56, 56] 0 |
|
CifNetConvLayer-10 [4, 64, 56, 56] 0 |
|
Conv2d-11 [4, 64, 56, 56] 36,864 |
|
BatchNorm2d-12 [4, 64, 56, 56] 128 |
|
SiLU-13 [4, 64, 56, 56] 0 |
|
CifNetConvLayer-14 [4, 64, 56, 56] 0 |
|
Identity-15 [4, 64, 56, 56] 0 |
|
CifNetBasicLayer-16 [4, 64, 56, 56] 0 |
|
CifNetStage-17 [4, 64, 56, 56] 0 |
|
Conv2d-18 [4, 128, 28, 28] 73,728 |
|
BatchNorm2d-19 [4, 128, 28, 28] 256 |
|
SiLU-20 [4, 128, 28, 28] 0 |
|
CifNetConvLayer-21 [4, 128, 28, 28] 0 |
|
Conv2d-22 [4, 128, 28, 28] 147,456 |
|
BatchNorm2d-23 [4, 128, 28, 28] 256 |
|
SiLU-24 [4, 128, 28, 28] 0 |
|
CifNetConvLayer-25 [4, 128, 28, 28] 0 |
|
Conv2d-26 [4, 128, 28, 28] 8,192 |
|
BatchNorm2d-27 [4, 128, 28, 28] 256 |
|
CifNetShortCut-28 [4, 128, 28, 28] 0 |
|
CifNetBasicLayer-29 [4, 128, 28, 28] 0 |
|
CifNetStage-30 [4, 128, 28, 28] 0 |
|
Conv2d-31 [4, 256, 14, 14] 294,912 |
|
BatchNorm2d-32 [4, 256, 14, 14] 512 |
|
SiLU-33 [4, 256, 14, 14] 0 |
|
CifNetConvLayer-34 [4, 256, 14, 14] 0 |
|
Conv2d-35 [4, 256, 14, 14] 589,824 |
|
BatchNorm2d-36 [4, 256, 14, 14] 512 |
|
SiLU-37 [4, 256, 14, 14] 0 |
|
CifNetConvLayer-38 [4, 256, 14, 14] 0 |
|
Conv2d-39 [4, 256, 14, 14] 32,768 |
|
BatchNorm2d-40 [4, 256, 14, 14] 512 |
|
CifNetShortCut-41 [4, 256, 14, 14] 0 |
|
CifNetBasicLayer-42 [4, 256, 14, 14] 0 |
|
CifNetStage-43 [4, 256, 14, 14] 0 |
|
Conv2d-44 [4, 512, 7, 7] 1,179,648 |
|
BatchNorm2d-45 [4, 512, 7, 7] 1,024 |
|
SiLU-46 [4, 512, 7, 7] 0 |
|
CifNetConvLayer-47 [4, 512, 7, 7] 0 |
|
Conv2d-48 [4, 512, 7, 7] 2,359,296 |
|
BatchNorm2d-49 [4, 512, 7, 7] 1,024 |
|
SiLU-50 [4, 512, 7, 7] 0 |
|
CifNetConvLayer-51 [4, 512, 7, 7] 0 |
|
Conv2d-52 [4, 512, 7, 7] 131,072 |
|
BatchNorm2d-53 [4, 512, 7, 7] 1,024 |
|
CifNetShortCut-54 [4, 512, 7, 7] 0 |
|
CifNetBasicLayer-55 [4, 512, 7, 7] 0 |
|
CifNetStage-56 [4, 512, 7, 7] 0 |
|
CifNetEncoder-57 [[-1, 512, 7, 7]] 0 |
|
AdaptiveAvgPool2d-58 [4, 512, 1, 1] 0 |
|
CifNetModel-59 [[-1, 512, 7, 7], [-1, 512, 1, 1]] 0 |
|
Flatten-60 [4, 512] 0 |
|
Linear-61 [4, 10] 5,130 |
|
================================================================ |
|
Total params: 4,910,922 |
|
Trainable params: 4,910,922 |
|
Non-trainable params: 0 |
|
---------------------------------------------------------------- |
|
Input size (MB): 2.30 |
|
Forward/backward pass size (MB): 345.14 |
|
Params size (MB): 18.73 |
|
Estimated Total Size (MB): 366.17 |
|
---------------------------------------------------------------- |
|
|