CifNetForImageClassification( (resnet): CifNetModel( (embedder): CifNetEmbeddings( (embedder): CifNetConvLayer( (convolution): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (pooler): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (encoder): CifNetEncoder( (stages): ModuleList( (0): CifNetStage( (layers): Sequential( (0): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) ) ) (1): CifNetStage( (layers): Sequential( (0): CifNetBasicLayer( (shortcut): CifNetShortCut( (convolution): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False) (normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) ) ) (2): CifNetStage( (layers): Sequential( (0): CifNetBasicLayer( (shortcut): CifNetShortCut( (convolution): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False) (normalization): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (normalization): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) ) ) (3): CifNetStage( (layers): Sequential( (0): CifNetBasicLayer( (shortcut): CifNetShortCut( (convolution): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) (normalization): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (normalization): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) ) ) ) ) (pooler): AdaptiveAvgPool2d(output_size=(1, 1)) ) (classifier): Sequential( (0): Flatten(start_dim=1, end_dim=-1) (1): Linear(in_features=512, out_features=10, bias=True) ) ) ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [4, 64, 112, 112] 9,408 BatchNorm2d-2 [4, 64, 112, 112] 128 SiLU-3 [4, 64, 112, 112] 0 CifNetConvLayer-4 [4, 64, 112, 112] 0 MaxPool2d-5 [4, 64, 56, 56] 0 CifNetEmbeddings-6 [4, 64, 56, 56] 0 Conv2d-7 [4, 64, 56, 56] 36,864 BatchNorm2d-8 [4, 64, 56, 56] 128 SiLU-9 [4, 64, 56, 56] 0 CifNetConvLayer-10 [4, 64, 56, 56] 0 Conv2d-11 [4, 64, 56, 56] 36,864 BatchNorm2d-12 [4, 64, 56, 56] 128 SiLU-13 [4, 64, 56, 56] 0 CifNetConvLayer-14 [4, 64, 56, 56] 0 Identity-15 [4, 64, 56, 56] 0 CifNetBasicLayer-16 [4, 64, 56, 56] 0 CifNetStage-17 [4, 64, 56, 56] 0 Conv2d-18 [4, 128, 28, 28] 73,728 BatchNorm2d-19 [4, 128, 28, 28] 256 SiLU-20 [4, 128, 28, 28] 0 CifNetConvLayer-21 [4, 128, 28, 28] 0 Conv2d-22 [4, 128, 28, 28] 147,456 BatchNorm2d-23 [4, 128, 28, 28] 256 SiLU-24 [4, 128, 28, 28] 0 CifNetConvLayer-25 [4, 128, 28, 28] 0 Conv2d-26 [4, 128, 28, 28] 8,192 BatchNorm2d-27 [4, 128, 28, 28] 256 CifNetShortCut-28 [4, 128, 28, 28] 0 CifNetBasicLayer-29 [4, 128, 28, 28] 0 CifNetStage-30 [4, 128, 28, 28] 0 Conv2d-31 [4, 256, 14, 14] 294,912 BatchNorm2d-32 [4, 256, 14, 14] 512 SiLU-33 [4, 256, 14, 14] 0 CifNetConvLayer-34 [4, 256, 14, 14] 0 Conv2d-35 [4, 256, 14, 14] 589,824 BatchNorm2d-36 [4, 256, 14, 14] 512 SiLU-37 [4, 256, 14, 14] 0 CifNetConvLayer-38 [4, 256, 14, 14] 0 Conv2d-39 [4, 256, 14, 14] 32,768 BatchNorm2d-40 [4, 256, 14, 14] 512 CifNetShortCut-41 [4, 256, 14, 14] 0 CifNetBasicLayer-42 [4, 256, 14, 14] 0 CifNetStage-43 [4, 256, 14, 14] 0 Conv2d-44 [4, 512, 7, 7] 1,179,648 BatchNorm2d-45 [4, 512, 7, 7] 1,024 SiLU-46 [4, 512, 7, 7] 0 CifNetConvLayer-47 [4, 512, 7, 7] 0 Conv2d-48 [4, 512, 7, 7] 2,359,296 BatchNorm2d-49 [4, 512, 7, 7] 1,024 SiLU-50 [4, 512, 7, 7] 0 CifNetConvLayer-51 [4, 512, 7, 7] 0 Conv2d-52 [4, 512, 7, 7] 131,072 BatchNorm2d-53 [4, 512, 7, 7] 1,024 CifNetShortCut-54 [4, 512, 7, 7] 0 CifNetBasicLayer-55 [4, 512, 7, 7] 0 CifNetStage-56 [4, 512, 7, 7] 0 CifNetEncoder-57 [[-1, 512, 7, 7]] 0 AdaptiveAvgPool2d-58 [4, 512, 1, 1] 0 CifNetModel-59 [[-1, 512, 7, 7], [-1, 512, 1, 1]] 0 Flatten-60 [4, 512] 0 Linear-61 [4, 10] 5,130 ================================================================ Total params: 4,910,922 Trainable params: 4,910,922 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 2.30 Forward/backward pass size (MB): 345.14 Params size (MB): 18.73 Estimated Total Size (MB): 366.17 ----------------------------------------------------------------