this model uses Task classification and the conversation is between USER and Answer or AI
NOTE β οΈ
THE JAX/FLAX version of model is available both for training and usage And This model support context length of 3300
this model support run with OST_UI so heres how to run it with just one command
git clone https://github.com/erfanzar/OST-OpenSourceTransformers
cd OST-OpenSourceTransformers/
python3 OST_UI/app.py --model_id='erfanzar/chatLGeM' --num_gpus <NUMBER OF GPUS TO USE>
Examples π
</s><|prompter|> TEXT </s><|assistant|>
or Just Simply Open GOOGLE COLAB ππ
Generate Method to get res Text by Text
def generate(model_,input_ids_,tokeinzer_,max_length:int=3300,temperature :float= 0.2,eos_token_id:int=2):
with torch.no_grad():
before_start = len(input_ids_[0])+1
for _ in range(max_length):
out = model_(
input_ids=input_ids_,
return_dict=True,
)
opa = torch.nn.functional.softmax(out.logits[:,-1,:]/temperature)
Camila = torch.multinomial(opa,1)
input_ids_ = torch.cat([input_ids_,Camila],-1)
clear_output(wait=True)
print(f"\r{tokeinzer_.decode(input_ids_[0],skip_special_tokens=True)[before_start:]}",end='')
if Camila[0].item() == eos_token_id:
break
yield tokeinzer_.decode(Camila[0],skip_special_tokens=True)
return f"{tokeinzer_.decode(input_ids_[0],skip_special_tokens=True)[before_start:]}"
Result
import socket
import time
def check_internet_connection():
try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("www.google.com", 80))
print("Internet connection is active.")
except:
print("Internet connection is not active.")
if __name__ == "__main__":
check_internet_connection()
Using Model in OST
LGeM π
what is LGeM, LGeM is a CausalLM Model that is trained on self instruct data (Alpaca data) and for initialization of the first train of the main model (weights are available) I used pre weights from Alpaca LoRA (open source)
it's Decoder Only
built-in Pytorch and Jax
you can simply import models like (In EasyDeL or OST Library)
# Pytorch
from modules import LGeMForCausalLM
# Jax
from modules import FlaxLGeMForCausalLM
- and Training code is available at jax_train.py (check source)
- training parameters
- learning rate 2e-5
- Optimizer AdamW
- batch 32
- TPU POD
- Train Time 50 hours
- budget 500 $
python3 LGeM-train.py
- Downloads last month
- 30
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.