wav2vec-tr-lite-AG / README.md
emre's picture
update readme.md
7e8302e
|
raw
history blame
2.16 kB
metadata
language: tr
datasets:
  - common_voice
metrics:
  - wer
tags:
  - audio
  - automatic-speech-recognition
  - speech
license: apache-2.0
model-index:
  - name: XLSR Wav2Vec2 Turkish by Davut Emre TASAR
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice tr
          type: common_voice
          args: tr
        metrics:
          - name: Test WER
            type: wer

wav2vec-tr-lite-AG

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") 

processor = Wav2Vec2Processor.from_pretrained("emre/wav2vec-tr-lite-AG")
model = Wav2Vec2ForCTC.from_pretrained("emre/wav2vec-tr-lite-AG")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00005
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4388        | 3.7   | 400  | 1.366          | 0.9701 |
| 0.3766        | 7.4   | 800  | 0.4914          | 0.5374 |
| 0.2295        | 11.11 | 1200 | 0.3934          | 0.4125 |
| 0.1121        | 14.81 | 1600 | 0.3264          | 0.2904 |
| 0.1473        | 18.51 | 2000 | 0.3103          | 0.2671 |
| 0.1013        | 22.22 | 2400 | 0.2589          | 0.2324 |
| 0.0704        | 25.92 | 2800 | 0.2826          | 0.2339 |
| 0.0537        | 29.63 | 3200 | 0.2704          | 0.2309 |
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.8.1
- Datasets 1.14.1.dev0
- Tokenizers 0.10.3