whisper-md-hu / README.md
mikr's picture
fix for hu leaderboard
a9f725f
|
raw
history blame
2.47 kB
metadata
language:
  - hu
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper medium Hungarian El Greco
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: hu
          split: test
        metrics:
          - name: Wer
            type: wer
            value: 18.642158316039133

Whisper medium Hungarian El Greco

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0,google/fleurs hu,hu_hu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3428
  • Wer: 18.6422

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0621 1.05 1000 0.2690 20.5099
0.0174 2.1 2000 0.2705 19.2292
0.006 3.15 3000 0.2954 18.9890
0.0028 4.2 4000 0.3093 18.8023
0.0016 5.25 5000 0.3240 18.9653
0.0018 6.3 6000 0.3313 18.6451
0.0014 7.35 7000 0.3330 18.9446
0.0016 8.39 8000 0.3428 18.6422
0.0015 9.44 9000 0.3508 18.9564
0.001 10.49 10000 0.3569 18.8556

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 2.0.0.dev20221216+cu116
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2