metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- minds14
metrics:
- wer
model-index:
- name: my_awesome_asr_mind_model
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: minds14
type: minds14
config: en-US
split: None
args: en-US
metrics:
- name: Wer
type: wer
value: 0.7633333333333333
my_awesome_asr_mind_model
This model is a fine-tuned version of facebook/wav2vec2-base on the minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 3.0211
- Wer: 0.7633
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1841 | 100.0 | 1000 | 2.4919 | 0.74 |
0.0295 | 200.0 | 2000 | 3.0211 | 0.7633 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1