led-base-16384-biolaysum-both-scite
This model is a fine-tuned version of allenai/led-base-16384 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1342
- Rouge1: 0.4546
- Rouge2: 0.1577
- Rougel: 0.2458
- Rougelsum: 0.2459
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
2.2504 | 0.69 | 5000 | 2.1945 | 0.4499 | 0.1547 | 0.2439 | 0.2439 |
2.0172 | 1.37 | 10000 | 2.1342 | 0.4546 | 0.1577 | 0.2458 | 0.2459 |
1.9011 | 2.06 | 15000 | 2.1019 | 0.4542 | 0.1558 | 0.2435 | 0.2435 |
1.8777 | 2.75 | 20000 | 2.0869 | 0.4565 | 0.1567 | 0.2433 | 0.2434 |
1.7547 | 3.43 | 25000 | 2.0740 | 0.4556 | 0.1563 | 0.2444 | 0.2444 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.12.1
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.