api-inference documentation

Audio Classification

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Audio Classification

Audio classification is the task of assigning a label or class to a given audio.

Example applications:

  • Recognizing which command a user is giving
  • Identifying a speaker
  • Detecting the genre of a song

For more details about the audio-classification task, check out its dedicated page! You will find examples and related materials.

Recommended models

Explore all available models and find the one that suits you best here.

Using the API

Python
JavaScript
cURL
import requests

API_URL = "https://api-inference.huggingface.co/models/ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
headers = {"Authorization": "Bearer hf_***"}

def query(filename):
    with open(filename, "rb") as f:
        data = f.read()
    response = requests.post(API_URL, headers=headers, data=data)
    return response.json()

output = query("sample1.flac")

To use the Python client, see huggingface_hub’s package reference.

API specification

Request

Payload
inputs* string The input audio data as a base64-encoded string. If no parameters are provided, you can also provide the audio data as a raw bytes payload.
parameters object Additional inference parameters for Audio Classification
        function_to_apply enum Possible values: sigmoid, softmax, none.
        top_k integer When specified, limits the output to the top K most probable classes.

Some options can be configured by passing headers to the Inference API. Here are the available headers:

Headers
authorization string Authentication header in the form 'Bearer: hf_****' when hf_**** is a personal user access token with Inference API permission. You can generate one from your settings page.
x-use-cache boolean, default to true There is a cache layer on the inference API to speed up requests we have already seen. Most models can use those results as they are deterministic (meaning the outputs will be the same anyway). However, if you use a nondeterministic model, you can set this parameter to prevent the caching mechanism from being used, resulting in a real new query. Read more about caching here.
x-wait-for-model boolean, default to false If the model is not ready, wait for it instead of receiving 503. It limits the number of requests required to get your inference done. It is advised to only set this flag to true after receiving a 503 error, as it will limit hanging in your application to known places. Read more about model availability here.

For more information about Inference API headers, check out the parameters guide.

Response

Body
(array) object[] Output is an array of objects.
        label string The predicted class label.
        score number The corresponding probability.
< > Update on GitHub