|
---
|
|
language: hi
|
|
datasets:
|
|
- unicamp-dl/mmarco
|
|
widget:
|
|
- text: "पाइथन एक सामान्य कार्यों के लिए उपयुक्त, उच्च स्तरीय प्रोग्रामिंग भाषा (General Purpose and High Level Programming language), इन्टरैक्टिव, ऑब्जेक्ट ओरिएन्टेड, स्क्रिप्टिंग भाषा है। इस भाषा को इस तरह से डिजाइन किया गया है ताकि इसमें लिखे गए कोड आसानी से पढ़े और समझे जा सकें।"
|
|
|
|
license: apache-2.0
|
|
---
|
|
|
|
# doc2query/msmarco-hindi-mt5-base-v1
|
|
|
|
This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on mT5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)).
|
|
|
|
It can be used for:
|
|
- **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/beir-cellar/beir) we have an example how to use docT5query with Pyserini.
|
|
- **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. In our [GPL-Paper](https://arxiv.org/abs/2112.07577) / [GPL Example on SBERT.net](https://www.sbert.net/examples/domain_adaptation/README.html#gpl-generative-pseudo-labeling) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models.
|
|
|
|
## Usage
|
|
```python
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
import torch
|
|
|
|
model_name = 'doc2query/msmarco-hindi-mt5-base-v1'
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
|
|
text = "पाइथन एक सामान्य कार्यों के लिए उपयुक्त, उच्च स्तरीय प्रोग्रामिंग भाषा (General Purpose and High Level Programming language), इन्टरैक्टिव, ऑब्जेक्ट ओरिएन्टेड, स्क्रिप्टिंग भाषा है। इस भाषा को इस तरह से डिजाइन किया गया है ताकि इसमें लिखे गए कोड आसानी से पढ़े और समझे जा सकें।"
|
|
|
|
|
|
def create_queries(para):
|
|
input_ids = tokenizer.encode(para, return_tensors='pt')
|
|
with torch.no_grad():
|
|
# Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality
|
|
sampling_outputs = model.generate(
|
|
input_ids=input_ids,
|
|
max_length=64,
|
|
do_sample=True,
|
|
top_p=0.95,
|
|
top_k=10,
|
|
num_return_sequences=5
|
|
)
|
|
|
|
# Here we use Beam-search. It generates better quality queries, but with less diversity
|
|
beam_outputs = model.generate(
|
|
input_ids=input_ids,
|
|
max_length=64,
|
|
num_beams=5,
|
|
no_repeat_ngram_size=2,
|
|
num_return_sequences=5,
|
|
early_stopping=True
|
|
)
|
|
|
|
|
|
print("Paragraph:")
|
|
print(para)
|
|
|
|
print("\nBeam Outputs:")
|
|
for i in range(len(beam_outputs)):
|
|
query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True)
|
|
print(f'{i + 1}: {query}')
|
|
|
|
print("\nSampling Outputs:")
|
|
for i in range(len(sampling_outputs)):
|
|
query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True)
|
|
print(f'{i + 1}: {query}')
|
|
|
|
create_queries(text)
|
|
|
|
```
|
|
|
|
**Note:** `model.generate()` is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it.
|
|
|
|
## Training
|
|
This model fine-tuned [google/mt5-base](https://huggingface.co/google/mt5-base) for 66k training steps (4 epochs on the 500k training pairs from MS MARCO). For the training script, see the `train_script.py` in this repository.
|
|
|
|
The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces.
|
|
|
|
This model was trained on a (query, passage) from the [mMARCO dataset](https://github.com/unicamp-dl/mMARCO).
|
|
|
|
|
|
|
|
|