Edit model card

luganda_wav2vec2_ctc

This model is a fine-tuned version of facebook/wav2vec2-base on the common_voice_7_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7622
  • Wer: 0.5422

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 48
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.2675 3.6 500 1.9999 0.9999
0.5754 7.19 1000 0.6976 0.7050
0.231 10.79 1500 0.6153 0.6440
0.1557 14.39 2000 0.6581 0.6130
0.1221 17.99 2500 0.6718 0.6063
0.1013 21.58 3000 0.6711 0.5934
0.0871 25.18 3500 0.6728 0.5731
0.0751 28.78 4000 0.6729 0.5726
0.0666 32.37 4500 0.6884 0.5689
0.0604 35.97 5000 0.7452 0.5609
0.0543 39.57 5500 0.7302 0.5616
0.0488 43.17 6000 0.7414 0.5480
0.0448 46.76 6500 0.7662 0.5560
0.042 50.36 7000 0.7629 0.5433
0.038 53.96 7500 0.7582 0.5479
0.0353 57.55 8000 0.7622 0.5422

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
19
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dmusingu/luganda_wav2vec2_ctc

Finetuned
(652)
this model

Evaluation results