|
--- |
|
|
|
tags: |
|
- token-classification |
|
task_ids: |
|
- named-entity-recognition |
|
datasets: |
|
- djagatiya/ner-ontonotes-v5-eng-v4 |
|
widget: |
|
- text: "On September 1st George won 1 dollar while watching Game of Thrones." |
|
--- |
|
|
|
# (NER) bert-base-cased : conll2012_ontonotesv5-english-v4 |
|
|
|
This `bert-base-cased` NER model was finetuned on `conll2012_ontonotesv5` version `english-v4` dataset. <br> |
|
Check out [NER-System Repository](https://github.com/djagatiya/NER-System) for more information. |
|
|
|
## Evaluation |
|
- Precision: 87.85 |
|
- Recall: 89.63 |
|
- F1-Score: 88.73 |
|
|
|
> check out this [eval.log](eval.log) file for evaluation metrics and classification report. |
|
|
|
``` |
|
precision recall f1-score support |
|
|
|
CARDINAL 0.86 0.87 0.86 935 |
|
DATE 0.84 0.88 0.86 1602 |
|
EVENT 0.65 0.67 0.66 63 |
|
FAC 0.69 0.71 0.70 135 |
|
GPE 0.97 0.93 0.95 2240 |
|
LANGUAGE 0.76 0.73 0.74 22 |
|
LAW 0.54 0.55 0.54 40 |
|
LOC 0.73 0.80 0.76 179 |
|
MONEY 0.87 0.90 0.88 314 |
|
NORP 0.93 0.96 0.94 841 |
|
ORDINAL 0.80 0.87 0.83 195 |
|
ORG 0.88 0.90 0.89 1795 |
|
PERCENT 0.88 0.90 0.89 349 |
|
PERSON 0.94 0.95 0.94 1988 |
|
PRODUCT 0.62 0.76 0.69 76 |
|
QUANTITY 0.74 0.81 0.77 105 |
|
TIME 0.61 0.67 0.64 212 |
|
WORK_OF_ART 0.56 0.66 0.61 166 |
|
|
|
micro avg 0.88 0.90 0.89 11257 |
|
macro avg 0.77 0.81 0.79 11257 |
|
weighted avg 0.88 0.90 0.89 11257 |
|
``` |