|
--- |
|
tags: |
|
- distilbert |
|
- phm |
|
datasets: |
|
- custom-phm-tweets |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilbert-phmtweets-sutd |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: custom-phm-tweets |
|
type: labelled |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.87 |
|
--- |
|
|
|
# distilbert-phmtweets-sutd |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on a custom tweet dataset that references public health mentions. |
|
It achieves the following results on the evaluation set: |
|
- Accuracy: 0.87 |
|
|
|
## Usage |
|
|
|
`from transformers import AutoTokenizer, AutoModelForSequenceClassification` |
|
|
|
`tokenizer = AutoTokenizer.from_pretrained("dibsondivya/distilbert-phmtweets-sutd")` |
|
|
|
`model = AutoModelForSequenceClassification.from_pretrained("dibsondivya/distilbert-phmtweets-sutd")` |
|
|
|
|