Models
Collection
A collection of multilingual speaker segmentation model's fine-tuned using diarizers and compatible with pyannote.
•
5 items
•
Updated
This model is a fine-tuned version of pyannote/segmentation-3.0 on the diarizers-community/callhome spa dataset. It achieves the following results on the evaluation set:
This segmentation model has been trained on Spanish data (Callhome) using diarizers. It can be loaded with two lines of code:
from diarizers import SegmentationModel
segmentation_model = SegmentationModel().from_pretrained('diarizers-community/speaker-segmentation-fine-tuned-callhome-spa')
To use it within a pyannote speaker diarization pipeline, load the pyannote/speaker-diarization-3.1 pipeline, and convert the model to a pyannote compatible format:
from pyannote.audio import Pipeline
import torch
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
# load the pre-trained pyannote pipeline
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1")
pipeline.to(device)
# replace the segmentation model with your fine-tuned one
segmentation_model = segmentation_model.to_pyannote_model()
pipeline._segmentation.model = segmentation_model.to(device)
You can now use the pipeline on audio examples:
from datasets import load_dataset
# load dataset example
dataset = load_dataset("diarizers-community/callhome", "spa", split="data")
sample = dataset[0]["audio"]
# pre-process inputs
sample["waveform"] = torch.from_numpy(sample.pop("array")[None, :]).to(device, dtype=model.dtype)
sample["sample_rate"] = sample.pop("sampling_rate")
# perform inference
diarization = pipeline(sample)
# dump the diarization output to disk using RTTM format
with open("audio.rttm", "w") as rttm:
diarization.write_rttm(rttm)
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
---|---|---|---|---|---|---|---|
0.655 | 1.0 | 382 | 0.5330 | 0.1799 | 0.0680 | 0.0756 | 0.0364 |
0.6293 | 2.0 | 764 | 0.5216 | 0.1747 | 0.0662 | 0.0746 | 0.0339 |
0.6145 | 3.0 | 1146 | 0.5244 | 0.1770 | 0.0759 | 0.0686 | 0.0325 |
0.5956 | 4.0 | 1528 | 0.5185 | 0.1734 | 0.0732 | 0.0687 | 0.0315 |
0.5989 | 5.0 | 1910 | 0.5198 | 0.1745 | 0.0739 | 0.0687 | 0.0319 |